Как находится центр масс. Определение центра масс

При исследовании поведения систем частиц, часто удобно использовать для описания движения такую точку, которая характеризует положение и движение рассматриваемой системы как единого целого. Такой точкой служит центр масс.

Для однородных тел обладающих симметрией центр масс часто совпадает с геометрическим центром тела. В однородном изотропном теле одной выделенной точке найдется симметричная ей точка.

Радиус-вектор и координаты центра масс

Предположим, что у нас имеются две частицы с равными массами, им соответствуют радиус-векторы: ${\overline{r}}_1\ и\ {\overline{r}}_2$ . В этом случае центр масс расположен посередине между частицами. Центр масс (точка C) определён радиус-вектором ${\overline{r}}_C$ (рис.1).

Из рис.1 видно, что:

\[{\overline{r}}_C=\frac{{\overline{r}}_1+\ {\overline{r}}_2}{2}\left(1\right).\]

Можно ожидать, что вместе с геометрическим центром системы радиус-вектор, которого равен ${\overline{r}}_C,$ играет роль точка, положение которой определяет распределение массы. Ее определяют так, чтобы вклад каждой частицы был пропорционален ее массе:

\[{\overline{r}}_C=\frac{{\overline{r}}_1m_1+\ {\overline{r}}_2m_2}{m_1+m_2}\left(2\right).\]

Радиус -вектор ${\overline{r}}_C$, определенный выражением (2) - средне взвешенная величина радиус-векторов частиц ${\overline{r}}_1$ и ${\overline{r}}_2$. Это становится очевидным, если формулу (2) представить в виде:

\[{\overline{r}}_C=\frac{m_1}{m_1+m_2}{\overline{r}}_1+\frac{m_2}{m_1+m_2}{\overline{r}}_2\left(3\right).\]

Выражение (3) показывает, что радиус-вектор каждой частицы входит в ${\overline{r}}_C$ с весом, который пропорционален его массе.

Выражение (3) легко обобщается для множества материальных точек, которые расположены произвольным образом.

Если положения N материальных точек системы задано при помощи их радиус-векторов, то радиус - вектор, определяющий положение центра масс находим как:

\[{\overline{r}}_c=\frac{\sum\limits^N_{i=1}{m_i{\overline{r}}_i}}{\sum\limits^N_{i=1}{m_i}}\left(4\right).\]

Выражение (4) считают определением центра масс системы.

При этом абсцисса центра масс равна:

Ордината ($y_c$) центра масс и его аппликата ($z_c$):

\ \

Формулы (4-7) совпадают с формулами, которые используют для определения тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

Скорость центра масс

Выражение для скорости центра масс (${\overline{v}}_c=\frac{d{\overline{r}}_c}{dt}$) запишем как:

\[{\overline{v}}_c=\frac{m_1{\overline{v}}_1+m_2{\overline{v}}_2+\dots +m_n{\overline{v}}_n}{m_1+m_2+\dots +m_n}=\frac{\overline{P}}{M}\left(8\right),\]

где $\overline{P}$ - суммарный импульс системы частиц; $M$ масса системы. Выражение (8) справедливо при движениях со скоростями которые существенно меньше скорости света.

Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

Примеры задач на определение центра масс

Пример 2

Задание. Система составлена из материальных точек (рис.2), запишите координаты ее центра масс?

Решение. Рассмотрим рис.2. Центр масс системы лежит на плоскости, значит, у него две координаты ($x_c,y_c$). Найдем их используя формулы:

\[\left\{ \begin{array}{c} x_c=\frac{\sum\limits_i{\Delta m_ix_i}}{m};; \\ y_с=\frac{\sum\limits_i{\Delta m_iy_i}}{m}. \end{array} \right.\]

Вычислим массу рассматриваемой системы точек:

Тогда абсцисса центра масс $x_{c\ }\ $равна:

Ордината $y_с$:

Ответ. $x_c=0,5\ b$; $y_с=0,3\ b$

Пример 2

Задание. Космонавт, имеющий массу $m$, неподвижен относительно корабля массы $M$. Двигатель космического аппарата выключен. Человек начинает подтягиваться к кораблю при помощи легкого троса. Какое расстояние пройдет космонавт ($s_1$), какое корабль ($s_2$) до точки встречи? В начальный момент расстояние между ними равно $s$.

Решение. Центр масс корабля и космонавта лежит на прямой, соединяющей эти объекты.

В космосе, где внешние силы отсутствуют, центр масс замкнутой системы (корабль-космонавт) либо покоится, либо движется с постоянной скоростью. В избранной нами (инерциальной) системе отсчета он покоится. При этом:

\[\frac{s_1}{s_2}=\frac{m_2}{m_1}\left(2.1\right).\]

По условию:

Из уравнений (2.1) и (2.2) получаем:

Ответ. $s_1=s\frac{m_2}{m_1+m_2};;\ s_2=s\frac{m_1}{m_1+m_2}$

Когда мы имеем дело с системой частиц, удобно найти такую точку - центр масс, которая характеризовала бы положение и движение этой системы как целого. В системе из двух одинаковых частиц такая точка С, очевидно, лежит посередине между ними (рис. 110а). Это ясно из соображений симметрии: в однородном и изотропном пространстве эта точка выделена среди всех остальных, ибо для любой другой точки А, расположенной ближе к одной из частиц, найдется симметричная ей точка В, расположенная ближе ко второй частице.

Рис. 110. Центр масс двух одинаковых частиц находится в точке С с радиусом-вектором ; центр масс двух частиц с разной массой делит отрезок между ними в отношении, обратно пропорциональном массам чатиц (б)

Очевидно, что радиус-вектор точки С равен полусумме радиусов-векторов одинаковых частиц (рис. 110а): Другими словами, представляет собой обычное среднее значение векторов

Определение центра масс. Как обобщить это определение на случай двух частиц с разными массами Можно ожидать, что наряду с геометрическим центром системы, радиус-вектор которого по-прежнему равен полусумме будет играть определенную роль точка, положение которой определяется распределением

ем масс. Ее естественно определить так, чтобы вклад каждой частицы был пропорционален ее массе:

Определяемый формулой (1) радиус-вектор центра масс представляет собой среднее взвешенное значение радиусов-векторов частиц что очевидно, если переписать (1) в виде

Радиус-вектор каждйй частицы входит в с весом, пропорциональным ее массе. Легко видеть, что определяемый формулой (1) центр масс С лежит на отрезке прямой, соединяющей частицы, и делит его в отношении, обратно пропорциональном массам частиц: (рис. 110б).

Обратим внимание на то, что приведенное здесь определение центра масс связано с известным вам условием равновесия рычага. Представим себе, что точечные массы на которые действует однородное поле тяжести, соединены стержнем пренебрежимо малой массы. Такой рычаг будет в равновесии, если точку его опоры поместить в центр масс С.

Естественным обобщением формулы (1) на случай системы, состоящей из материальных точек с массами и радиусами-векторами является равенство

которое служит определением радиуса-вектора центра масс (или центра инерции) системы.

Скорость центра масс. Центр масс характеризует не только положение, но и движение системы частиц как целого. Скорость центра масс, определяемая равенством как следует из (2), следующим образом выражается через скорости образующих систему частиц:

В числителе правой части этого выражения, как следует из формулы (6) предыдущего параграфа, стоит полный импульс системы Р, а в знаменателе - ее полная масса М. Поэтому импульс системы частиц равен произведению массы всей системы М на скорость ее центра масс

Формула (4) показывает, что импульс системы связан со скоростью ее центра масс точно так же, как импульс отдельной частицы связан со скоростью частицы. Именно в этом смысле движение центра масс и характеризует движение системы как целого.

Закон движения центра масс. Закон изменения импульса системы частиц, выражаемый формулой (9) предыдущего параграфа, по существу представляет собой закон движения ее центра масс. В самом деле, из (4) при неизменной полной массе М системы имеем

что означает, что скорость изменения импульса системы равна произведению ее массы на ускорение центра масс. Сравнивая (5) с формулой (6) § 29, получаем

Согласно (6) центр масс системы движется так, как двигалась бы одна материальная точка массы М под действием силы, равной сумме всех внешних сил, действующих на входящие в систему частицы. В частности, центр масс замкнутой физической системы, на которую внешние силы не действуют, движется в инерциальной системе отсчета равномерно и прямолинейно либо покоится.

Представление о центре масс в ряде случаев позволяет получить ответы на некоторые вопросы еще проще, чем при непосредственном использовании закона сохранения импульса. Рассмотрим следующий пример.

Космонавт вне корабля. Космонавт массы неподвижный относительно космического корабля массы с выключенным двигателем, начинает подтягиваться к кораблю с помощью легкого страховочного фала. Какие расстояния пройдут космонавт и корабль до встречи, если первоначально расстояние между ними равно

Центр масс корабля и космонавта находится на соединяющей их прямой, причем соответствующие расстояния обратно пропорциональны массам Так как то

сразу получаем

В далеком космосе, где внешние силы отсутствуют, центр масс этой замкнутой системы либо покоится, либо движется с постоянной скоростью. В той системе отсчета, где он покоится, космонавт и корабль пройдут до встречи расстояния , даваемые формулами (7).

Для справедливости подобных рассуждений принципиально важно использовать инерциальную систему отсчета. Если бы здесь мы опрометчиво связали систему отсчета с космическим кораблем, то пришли бы к заключению, что при подтягивании космонавта центр масс системы приходит в движение в отсутствие внешних сил: он приближается к кораблю. Центр масс сохраняет свою скорость только относительно инерциальной системы отсчета.

В уравнение (6), определяющее ускорение центра масс системы частиц, не входят действующие в ней внутренние силы. Значит ли это, что внутренние силы вообще никак не влияют на движение центра масс? В отсутствие внешних сил или когда эти силы постоянны, это действительно так. Например, в однородном поле тяжести центр масс разорвавшегося в полете снаряда продолжает движение по той же параболе, пока ни один из осколков еще не упал на землю.

Роль внутренних сил. В тех случаях, когда внешние силы могут изменяться, дело обстоит несколько сложнее. Внешние силы действуют не на центр масс, а на отдельные частицы системы. Эти силы могут зависеть от положения частиц, а положение каждой частицы при ее движении определяется всеми действовавшими на нее силами, как внешними, так и внутренними.

Поясним это на том же простом примере снаряда, разрывающегося в полете на мелкие осколки под действием внутренних сил. Пока все осколки в полете, центр масс, как уже говорилось, продолжает движение по той же параболе. Однако как только хотя бы один из осколков коснется земли и его движение прекратится, добавится новая внешняя сила - сила реакции поверхности земли, действующая на упавший осколок. В результате изменится ускорение центра масс, и он уже не будет двигаться по прежней параболе. Само появление этой силы реакции является следствием действия внутренних сил, разорвавших снаряд. Итак, действие внутренних сил в момент разрыва снаряда может привести к изменению ускорения, с которым будет двигаться центр масс в более поздние моменты времени и, следовательно, к изменению его траектории.

Приведем еще более яркий пример влияния внутренних сил на движение центра масс. Представим себе, что спутник Земли,

обращающийся вокруг нее по круговой орбите, под действием внутренних сил разделяется на две половины. Одна из половин останавливается и начинает отвесно падать на Землю. По закону сохранения импульса вторая половина должна в этот момент вдвое увеличить свою скорость, направленную по касательной к окружности. Как мы увидим ниже, при такой скорости эта половина улетит от Земли на бесконечно большое расстояние. Следовательно, и центр масс спутника, т. е. двух его половин, также удалится на бесконечно большое расстояние от Земли. И причина тому - действие внутренних сил при разделении спутника на две части, так как в противном случае неразделившийся на части спутник продолжал бы движение по круговой орбите.

Реактивное движение. Закон сохранения импульса замкнутой системы позволяет легко объяснить принцип реактивного движения. При сжигании топлива повышается температура и в камере сгорания создается высокое давление, благодаря чему образовавшиеся газы с большой скоростью вырываются из сопла двигателя ракеты. В отсутствие внешних полей полный импульс ракеты и вылетающих из сопла газов остается неизменным. Поэтому при истечении газов ракета приобретает скорость в противоположном направлении.

Уравнение Мещерского. Получим уравнение, описывающее движение ракеты. Пусть в некоторый момент времени ракета в какой-то инерциальной системе отсчета имеет скорость Введем другую инерциальную систему отсчета, в которой в данный момент времени ракета неподвижна. Назовем такую систему отсчета сопутствующей. Если работающий двигатель ракеты за промежуток выбрасывает газы массы со скоростью относительно ракеты, то спустя время скорость ракеты в этой сопутствующей системе будет отлична от нуля и равна

Применим к рассматриваемой замкнутой физической системе ракета плюс газы закон сохранения импульса. В начальный момент в сопутствующей системе отсчета ракета и газы покоятся, поэтому полный импульс равен нулю. Спустя время импульс ракеты равен а импульс выброшенных газов Поэтому

Полная масса системы ракета плюс газы сохраняется, поэтому масса выброшенных газов равна убыли массы ракеты:

Теперь уравнение (8) после деления на промежуток времени переписывается в виде

Переходя к пределу получаем уравнение движения тела переменной массы (ракеты) в отсутствие внешних сил:

Уравнение (9) имеет вид второго закона Ньютона, если его правую часть рассматривать как реактивную силу, т. е. силу, с которой действуют на ракету вылетающие из нее газы. Масса ракеты здесь не постоянна, а убывает со временем из-за потери вещества, т. е. Поэтому реактивная сила; направлена в сторону, противоположную скорости вылетающих из сопла газов относительно ракеты. Видно, что эта сила тем больше, чем больше скорость истечения газов и чем выше расход топлива в единицу времени.

Уравнение (9) получено в определенной инерциальной системе отсчета - сопутствующей системе. Вследствие принципа относительности оно справедливо и в любой другой инерциальной системе отсчета. Если, кроме реактивной силы, на ракету действуют и какие-либо другие внешние силы например сила тяжести и сила сопротивления воздуха, то их следует добавить в правую часть уравнения (9):

Это уравнение впервые было получено Мещерским и носит его имя. При заданном режиме работы двигателя, когда масса представляет собой определенную известную функцию времени, уравнение Мещерского позволяет рассчитать скорость ракеты в любой момент времени.

Какие физические соображения свидетельствуют о целесообразности определения центра масс с помощью формулы (1)?

В каком смысле центр масс характеризует движение системы частиц как целого?

О чем говорит закон движения центра масс системы взаимодействующих тел? Влияют ли внутренние силы на ускорение центра масс?

Могут ли внутренние силы влиять на траекторию центра масс системы?

В задаче о разрыве снаряда, рассмотренной в предыдущем параграфе, закон движения центра масс позволяет сразу найти дальность полета второго осколка, если его начальная скорость горизонтальна. Как это сделать? Почему эти соображения неприменимы в случае, когда его начальная скорость имеет вертикальную составляющую?

В процессе разгона ракеты ее двигатель работает в постоянном режиме, так что относительная скорость истечения газов и расход топлива в единицу времени неизменны. Будет ли при этом ускорение ракеты постоянным?

Выведите уравнение Мещерского, используя вместо сопутствующей системы отсчета инерциальную систему, в которой ракета уже имеет скорость

Формула Циолковского. Допустим, что разгон ракеты происходит в свободном пространстве, где на нее не действуют внешние силы. По мере вырабатывания топлива масса ракеты убывает. Найдем зависимость между массой израсходованного топлива и набранной ракетой скоростью.

После включения двигателя покоившаяся ракета начинает набирать скорость, двигаясь по прямой линии. Спроецировав векторное уравнение (9) на направление движения ракеты, получим

Будем в уравнении (11) рассматривать массу ракеты как функцию набранной ракетой скорости Тогда скорость изменения массы со временем можно представить следующим образом:

Определение

При рассмотрении системы частиц, часто удобно найти такую точку, которая характеризует положение и движение рассматриваемой системы как единого целого. Такой точкой является центр масс .

Если у нас две частицы одинаковой массы, то такая точка находится посередине между ними.

Координаты центра масс

Допустим, что две материальные точки, имеющие массы $m_1$ и $m_2$ находятся на оси абсцисс и имеют координаты $x_1$ и $x_2$. Расстояние ($\Delta x$) между этими частицами равно:

\[\Delta x=x_2-x_1\left(1\right).\]

Определение

Точку С (рис.1), делящую расстояние между этими частицами на отрезки, обратно пропорциональные массам частиц называют центром масс этой системы частиц.

В соответствии с определением для рис.1 имеем:

\[\frac{l_1}{l_2}=\frac{m_2}{m_1}\left(2\right).\]

где $x_c$ - координата центра масс, то получаем:

Из формулы (4) получим:

Выражение (5) легко обобщается для множества материальных точек, которые расположены произвольным образом. При этом абсцисса центра масс равна:

Аналогично получают выражения для ординаты ($y_c$) центра масс и его аппликаты ($z_c$):

\ \

Формулы (6-8) совпадают с выражениями, определяющими центр тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

Если положение N материальных точек системы задано в векторной форме, то радиус - вектор, определяющий положение центра масс находим как:

\[{\overline{r}}_c=\frac{\sum\limits^N_{i=1}{m_i{\overline{r}}_i}}{\sum\limits^N_{i=1}{m_i}}\left(9\right).\]

Движение центра масс

Выражение для скорости центра масс (${\overline{v}}_c=\frac{d{\overline{r}}_c}{dt}$) имеет вид:

\[{\overline{v}}_c=\frac{m_1{\overline{v}}_1+m_2{\overline{v}}_2+\dots +m_n{\overline{v}}_n}{m_1+m_2+\dots +m_n}=\frac{\overline{P}}{M}\left(10\right),\]

где $\overline{P}$ - суммарный импульс системы частиц; $M$ масса системы. Выражение (10) справедливо при движениях со скоростями которые существенно меньше скорости света.

Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

Примеры задач с решением

Пример 1

Задание. Запишите координаты центра масс системы из трех шариков, которые находятся в вершинах и центра равностороннего треугольника, сторона которого равна $b\ (м)$ (рис.2).

Решение. Для решения задачи используем выражения, определяющие координаты центра масс:

\ \

Из рис.2 мы видим, что абсциссы точек:

\[\left\{ \begin{array}{c} m_1=2m,\ \ x_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ x_2=\frac{b}{2};; \\ m_3=m,\ \ x_3=\frac{b}{2};; \\ m_4=4m,\ \ x_4=b. \end{array} \right.\left(2.3\right).\]

Тогда абсцисса центра масса равна:

Найдем ординаты точек.

\[ \begin{array}{c} m_1=2m,\ \ y_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ y_2=\frac{b\sqrt{3}}{2};; \\ m_3=m,\ \ y_3=\frac{b\sqrt{3}}{6};; \\ m_4=4m,\ \ y_4=0. \end{array} \left(2.4\right).\]

Для нахождения ординаты $y_2$ вычислим, чему равна высота в равностороннем треугольнике:

Ординату $y_3$ найдем, помня, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, получаем:

Вычислим ординату центра масс:

Ответ. $x_c=0,6b\ {\rm \ }{\rm м}$; $y_c=\frac{b\sqrt{3}\ }{6}$ м

Пример 2

Задание. Запишите закон движения центра масс.

Решение. Закон изменения импульса системы частиц является законом движения центра масс. Из формулы:

\[{\overline{v}}_c=\frac{\overline{P}}{M}\to \overline{P}=M{\overline{v}}_c\left(2.1\right)\]

при постоянной массе $M$ продифференцировав обе части выражения (2.1), получим:

\[\frac{d\overline{P}}{dt}=M\frac{d{\overline{v}}_c}{dt}\left(2.2\right).\]

Выражение (2.2) означает, что скорость изменения импульса системы равняется произведению массы системы на ускорение ее центра масс. Так как

\[\frac{d\overline{P}}{dt}=\sum\limits^N_{i=1}{{\overline{F}}_i\left(2.3\right),}\]

В соответствии с выражением (2.4) получаем, что центр масс системы движется так, как двигалась бы одна материальная точка массы M, если на нее действует сила, равная сумме всех внешних сил, действующих на частицы, которые входят в рассматриваемую систему. Если $\sum\limits^N_{i=1}{{\overline{F}}_i=0,}$ то центр масс движется равномерно и прямолинейно.

Если бы мы не вычитали, а складывали уравнения (6.1), у нас получился бы просто закон сохранения импульса

Его можно переписать чисто формально как закон постоянства во времени некоторой скорости Vc:

Перейдем в систему отсчета, движущуюся со скоростью (6.4). Скорости частиц 1 и 2 при этом преобразуются следующим образом:

т. е. в новой системе отсчета они выражаются через скорость относительного движения. Свяжем скорость Vc с радиусом-вектором некоторой точки r с:

Отметим, что определение (6.6) совпадает с известным из школьного курса физики понятием центра тяжести. Для доказательства перенесем начало координат в точку r с. Тогда, совершенно аналогично (6.5), получим

Таким образом,

(центр тяжести определяется равенством произведений массы на «плечо»). Но определения (6.4) и (6.6) более корректны и более универсальны, поскольку без каких-либо проблем обобщаются на любое число материальных точек, а следовательно, и на макроскопические тела. Точку С в механике — и вообще в физике — принято называть центром масс или центром инерции системы материальных точек.

Пусть в некоторой инерциальной системе координат положения взаимодействующих материальных точек с массами m 1 , m 2 , m N задаются в каждый момент времени t посредством радиусов-векторов r 1 (t), r 2 (t), r N (t)

(см. рис. 6.3 а). Тогда центром масс рассматриваемой системы материальных точек называется такая точка, радиус-вектор которой R r 1 (t), r 2 (t), r N (t) материальных точек по

Подчеркнем, что в общем случае положение центра масс не совпадает с положением какой-либо из материальных точек системы (см. рис. 6.3 б), хотя иногда такое может и случиться.

Рис. 6.3 центром масс системы материальных точек называется такая точка, радиус-вектор которой R c(t) выражается через радиусы-векторы r 1 (t), r 2 (t), r N (t) материальных точек

Продифференцируем по времени левую и правую части равенства (6.7).

Производная радиуса-вектора по времени есть по определению скорость, так что в результате мы получаем

где Vc — скорость центра масс, v 1 , v 2 , v N — скорости материальных точек. Величина m 1 v 1 в (6.8) — импульс первой материальной точки, m 2 V 2 — импульс второй точки и т.д. Таким образом, в фигурных скобках выражения (6.8) стоит сумма импульсов рассматриваемой системы материальных точек, т. е. импульс Р всей системы.

Следовательно, равенство (6.8) можно переписать в виде Р = {m 1 + m 2 + m N }V c . (6.9)

В системе отсчета, где центр масс покоится,

Если нас не интересует относительное движение материальных точек, а интересует движение системы как целого, то тогда всю систему можно рассматривать как одну материальную точку, движущуюся со скоростью Vc и обладающую импульсом Р. Вспомним, что масса материальной точки есть, по определению, коэффициент пропорциональности между импульсом и скоростью. Поэтому стоящий в равенстве (6.9) коэффициент пропорциональности, заключенный в фигурные скобки, есть масса М рассматрваемой системы:


М = m 1 + m 2 + m N , (6.10)

т. е. масса системы материальных точек равняется сумме масс этих точек. Соотношение (6.10), согласно которому масса сложного тела равна сумме масс его частей, кажется нам привычным и очевидным. Однако, как мы еще убедимся, в релятивистской механике (т. е. в более общем случае) ситуация будет совершенно иной. В предельном случае ньютоновой механики равенство (6.10) представляет собой частный случай определенного физического закона — закона сохранения массы.

В отсутствие внешних сил, т. е. для замкнутой системы, сумма импульсов всех тел системы не зависит от времени; тогда из (6.9) следует важное свойство движения центра масс замкнутой системы материальных точек:

т. е. центр масс замкнутой системы материальных точек неподвижен или движется равномерно и прямолинейно , хотя каждая из материальных точек может совершать сложное движение. Приведенное выше утверждение называют иногда теоремой о движении центра масс.

Мы сейчас докажем следующее важное свойство кинетической энергии:

кинетическая энергия Т системы материальных точек равна сумме кинетической энергии всей массы системы, мысленно сосредоточенной в ее центре масс и движущейся вместе с ним, и кинетической энергии Т" той же системы в ее относительном движении по отношению к системе отсчета, движущейся вместе с центром масс:

где М = m 1 + m 2 + m N . Vc — скорость центра масс в исходной системе отсчета, v i — скорость i-ой материальной точки относительно системы отсчета, движущейся вместе с точкой С. Такую систему обычно называют «системой центра масс», «системой центра инерции» или просто «ц-системой». (Систему отсчета, в которой поставлена задача, если эта система не совпадает с ц-системой, принято называть лабораторной системой отсчета или л-системой).

Для доказательства получим вначале более общее соотношение, связывающее кинетическую энергию в двух системах отсчета (см. рис. 6.4). Для координат и скоростей точек в старой системе R i , V i и в новой системе r i , v i запишем преобразования Галилея :

где R — радиус-вектор перехода из старой системы в новую, а V — соответственно, скорость движения новой системы относительно старой.

Рис. 6.4 связь координат в двух системах отсчета

Тогда кинетическую энергию в старой системе отсчета можно представить в виде

(6.12)

Правую часть (6.12) можно представить в виде трех сумм:

где Р — полный импульс системы материальных точек в новой системе отсчета. Соотношение (6.13) принято называть теоремой Кенига. Если же новая система совпадает с ц-системой, то суммарный импульс в ней равен нулю, V = Vc, а значит, имеет место соотношение (6.11).

В заключение этого параграфа отметим два важных свойства, вытекающих из определения центра масс. Во-первых, частицы в (6.7) можно объединять в какие угодно группы, например:

Отсюда, как легко сообразить, следует, что центр масс любой системы макроскопических тел может быть найден как центр масс системы материальных точек, в предположении, что масса каждого тела сосредоточена в его собственном центре масс.

И во-вторых, от суммирования в (6.7) нетрудно перейти к интегрированию, если мы вычисляем положение центра масс тела с непрерывным распределением плотности вещества ρ(т):

Любая механическая система так же, как и любое тело обладает такой замечательной точкой как центр масс. Она есть у человека, автомобиля, Земли, Вселенной, т. е. у любого предмета. Очень часто эту точку путают с центром тяжести. Несмотря на то что они часто друг с другом совпадают, у них есть определенные различия. Можно сказать, что центр масс механической системы - это более обширное понятие по сравнению с ее центром тяжести. Что же это такое и как найти его местоположение в системе или в отдельно взятом объекте? Об этом как раз и пойдет речь в нашей статье.

Понятие и формула определения

Центр масс представляет собой некую точку пересечения прямых, параллельно которым воздействуют внешние силы, вызывая при этом поступательное движение данного объекта. Это утверждение является справедливым как для отдельного взятого тела, так и для группы элементов имеющих между собой определенную связь. Центр масс всегда совпадает с центром тяжести и является одной из важнейших геометрических характеристик распределения всех масс в исследуемой системе. Обозначим через m i массу каждой точки системы (i = 1,…,n). Положение любой из них можно описать тремя координатами: x i , у i , z i . Тогда очевидно, что масса тела (всей системы) будет равна сумме масс ее частиц: М=∑m i . А сам центр масс (O) можно будет определить через следующие соотношения:

X o = ∑m i *x i /M;

Y o = ∑m i *y i /M;

Z o = ∑m i *z i /M.

Чем же интересна данная точка? Одно из главных ее достоинств - это то, что она характеризует движение объекта как целого. Это свойство позволяет использовать центр массы в тех случаях, когда тело имеет большие габариты или неправильную геометрическую форму.

Что следует знать для нахождения данной точки


Практическое применение

Рассматриваемое понятие широко используется в различных областях механики. Обычно центр масс используют в роли центра тяжести. Последний представляет собой такую точку, подвесив объект, за который, можно будет наблюдать неизменность его положения. Центр масс системы нередко рассчитывают при проектировании различных деталей в машиностроении. Он также играет большую роль в обеспечении равновесия, что можно применить, к примеру, при создании альтернативных вариантов мебели, транспортных средств, в строительстве, в складском хозяйстве и т. д. Без знания основных принципов, по которым определяется центр тяжести, было бы сложно организовать безопасность работ с массивными грузами и любыми габаритными предметами. Надеемся, что наша статья оказалась полезной и ответила на все вопросы по данной теме.