Система дыхания сущность и значение дыхания для организма. Требования к газовому составу воздуха Среднее содержание кислорода во вдыхаемом воздухе составляет

Менее чем 200 лет назад земная атмосфера содержала 40% кислорода. Сегодня кислорода в воздухе содержится только 21%

В городском парке 20,8%

В лесу 21,6%

На берегу моря 21,9%

В квартире и офисе менее 20%

Учёные доказали, что снижение кислорода на 1% приводит к снижению работоспособности на 30%.

Недостаток кислорода является результатом работы автомобилей, промышленных выбросов и загрязнений. В городе кислорода на 1% меньше, чем в лесу.

Но самым большим виновником в недостатке кислорода являемся мы сами. Построив тёплые и герметичные дома, живя в квартирах с пластиковыми окнами мы оградили себя от поступления свежего воздуха. При каждом выдохе снижая концентрацию кислорода и увеличивая количество углекислого газа. Нередко содержание кислорода в офисе 18%, в квартире 19%.

Качество воздуха, необходимого для поддержания жизненных процессов всех живых организмов на Земле,

определяется содержанием в нем кислорода.

Зависимость качества воздуха от процентного содержания в нем кислорода.


Уровень комфортного содержания кислорода в воздухе

Зона 3-4: ограничена законодательно утвержденным стандартом минимального содержания кислорода в воздухе для помещений (20,5%) и "эталоном" свежего воздуха (21%). Для городского воздуха нормальным считается содержание кислорода 20,8%.

Благоприятный уровень содержания кислорода в воздухе

Зона 1-2: такой уровень содержания кислорода характерен для экологически чистых районов, лесных массивов. Содержание кислорода в воздухе на берегу океана может достигать 21,9%

Недостаточный уровень содержания кислорода в воздухе

Зано 5-6: ограничена минимально допустимым уровнем содержания кислорода, когда человек может находиться без дыхательного аппарата (18%).

Пребывание человека в помещениях с таким воздухом сопровождается быстрой утомляемостью, сонливостью, снижением умственной активности, головными болями.

Длительное пребывание в помещениях с такой атмосферой опасно для здоровья.

Опасно низкий уровень содержания кислорода в воздухе

Зона 7 и далее: при содержании кислорода 16% наблюдается головокружение, учащенное дыхание, 13% - потеря сознания, 12% - необратимые изменения функционирования организма, 7% - смерть.

Внешние признаки кислородного голодания (гипоксии)

- ухудшение цвета кожи

- быстрая утомляемость, снижение умственной, физической и сексуальной активности

- депрессия, раздражительность,нарушение сна

- головные боли

Длительное пребывание в помещении с недостаточным уровнем содержания кислорода может привести к более серьезным проблемам со здоровьем, т.к. кислород отвечает за все обменные процессы организма, то следствием его недостатка становятся:

Нарушение обмена веществ

Снижение иммунитета

Правильно организованная система вентиляции жилых и рабочих помещений может стать залогом хорошего здоровья.

Роль кислорода для здоровья человека. Кислород:

Повышает умственную работоспособность;

Повышает устойчивость организма к стрессам и повышенным нервным нагрузкам;

Поддерживает уровень кислорода в крови;

Улучшает согласованность работы внутренних органов;

Повышает иммунитет;

Способствует снижению веса. Регулярное потребление кислорода в сочетании с двигательной активностью, приводит к активному расщеплению жиров;

Нормализуется сон: он становится более глубоким и продолжительным, уменьшается период засыпания и двигательной активности

Выводы:

Кислород влияет на нашу жизнь, и чем его больше, тем наша жизнь полна красок и разнообразна.

Можно купить кислородный баллон или бросить всё и уехать жить в лес. Если Вам это недоступно, проветривайте каждый час квартиру, офис. Мешают сквозняки, пыль, шум установите вентиляцию, которая будет снабжать Вас свежим воздухом, очищать от выхлопных газов.

Сделайте всё, чтобы свежий воздух был в Вашем доме и Вы увидите изменения в Вашей жизни.

Атмосферный воздух представляет собой смесь различных газов. В его составе имеются постоянные компоненты атмосферы (кислород, азот, углекислый газ), инертные газы (аргон, гелий, неон, криптон, водород, ксенон, радон), небольшие количества озона, закиси азота, метана, йода, водяных паров, а также в переменных количествах различные примеси природного происхождения и загрязнения, образующиеся в результате производственной деятельности человека.

Кислород (О2) самая важная для человека часть воздуха. Он необходим для осуществления окислительных процессов в организме. В атмосферном воздухе содержание кислорода равно 20,95 %, в выдыхаемом человеком воздухе - 15,4-16 %. Снижение его в атмосферном воздухе до 13-15 % приводит к нарушению физиологических функций, а до 7-8 % - к смертельному исходу.

Азот (N) - является основной составной частью атмосферного воздуха. Вдыхаемый и выдыхаемый человеком воздух содержит примерно одно и то же количество азота - 78,97-79,2 %. Биологическая роль азота заключается, главным образом, в том, что он является разбавителем кислорода, поскольку в чистом кислороде жизнь невозможна. При увеличении содержания азота до 93 % наступает смерть.

Диоксид углерода (углекислый газ), СО2 - является физиологическим регулятором дыхания. Содержание в чистом воздухе составляет 0,03 %, в выдыхаемом человеком - 3 %.

Снижение концентрации СО2 во вдыхаемом воздухе не представляет опасности, т.к. необходимый уровень его в крови поддерживается регуляторными механизмами за счет выделения при обменных процессах.

Повышение содержания углекислого газа во вдыхаемом воздухе до 0,2 % вызывает у человека нарушение самочувствия, при 3-4 % наблюдается возбужденное состояние, головная боль, шум в ушах, сердцебиение, замедление пульса, а при 8 % возникает тяжелое отравление, потеря сознания и наступает смерть.

За последнее время концентрация диоксида углерода в воздухе промышленных городов увеличивается в результате интенсивного загрязнения воздуха продуктами сгорания топлива. Повышение в атмосферном воздухе СО2 приводит к появлению в городах токсических туманов и «парниковому эффекту», связанному с задержкой углекислотой теплового излучения земли.

Повышение содержания СО2 сверх установленной нормы свидетельствует об общем ухудшении санитарного состояния воздуха, т.к наряду с диоксидом углерода могут накапливаются другие токсические вещества, может ухудшается ионизационный режим, возрастать запыленность и микробная загрязненность.

Озон (О3). Основное его количество отмечается на уровне 20-30 км от поверхности Земли. В приземных слоях атмосферы содержится ничтожно малое количество озона - не более 0,000001 мг/л. Озон защищает живые организмы земли от губительного действия коротковолновой ультрафиолетовой радиации и одновременно поглощает длинноволновую инфракрасную радиацию, исходящую от Земли, предохраняя ее от чрезмерного охлаждения. Озон обладает окислительными способностями, поэтому в загрязненном воздухе городов его концентрация ниже, чем в сельской местности. В связи с этим озон считался показателем чистоты воздуха. Однако в последнее время установлено, что озон образуется в результате фотохимических реакций при формировании смога, поэтому обнаружение озона в атмосферном воздухе крупных городов считают показателем его загрязнения.

Инертные газы - не имеют выраженного гигиенического и физиологического значения.

Хозяйственно-производственная деятельность человека является источником загрязнения воздуха различными газообразными примесями и взвешенными частицами. Повышенное содержание вредных веществ в атмосфере и в воздухе помещений неблагоприятно сказывается на организме человека. В связи с этим важнейшей гигиенической задачей является нормирование их допустимого содержания в воздухе.

Санитарно-гигиеническое состояние воздуха принято оценивать по предельно допустимым концентрациям (ПДК) вредных веществ в воздухе рабочей зоны.

ПДК вредных веществ в воздухе рабочей зоны - это концентрация, которая при ежедневной 8-часовой работе, но не более 41 час в неделю, в продолжение всего рабочего стажа не вызывает заболеваний или отклонений в состоянии здоровья настоящего и последующих поколений. Устанавливают ПДК среднесуточную и максимально разовую (действие до 30 мин в воздухе рабочей зоны). ПДК для одного и того же вещества может быть различной в зависимости от длительности его воздействия на человека.

На пищевых предприятиях основными причинами загрязнение воздуха вредными веществами являются нарушения технологического процесса и аварийные ситуации (канализации, вентиляции и др.).

Гигиеническую опасность в воздухе помещений представляют оксид углерода, аммиак, сероводород, сернистый газ, пыль и др., а также загрязнение воздуха микроорганизмами.

Оксид углерода (СО) - газ без запаха и цвета, попадает в воздух как продукт неполного сгорания жидкого и твердого топлива. Он вызывает острое отравление при концентрации в воздухе 220-500 мг/м3 и хроническое отравление - при постоянном вдыхании концентрации 20-30 мг/м3. Среднесуточная ПДК оксида углерода в атмосферном воздухе - 1 мг/м3, в воздухе рабочей зоны - от 20 до 200 мг/м3 (в зависимости от длительности работы).

Диоксид серы (S02) - наиболее часто встречающаяся примесь атмосферного воздуха, поскольку сера содержится в различных видах топлива. Этот газ обладает общетоксическим действием и вызывает заболевания дыхательных путей. Раздражающее действие газа обнаруживается при концентрации его в воздухе свыше 20 мг/м3. В атмосферном воздухе среднесуточная ПДК диоксида серы - 0,05 мг/м3, в воздухе рабочей зоны - 10 мг/м3.

Сероводород (H2S) - обычно попадает в атмосферный воздух с отходами химических, нефтеперерабатывающих и металлургических заводов, а также образуется и может загрязнять воздух помещений в результате гниения пищевых отходов и белковых продуктов. Сероводород обладает общетоксическим действием и вызывает неприятные ощущения у человека при концентрации 0,04-0,12 мг/м3, а концентрация более 1000 мг/м3 может стать смертельной. В атмосферном воздухе среднесуточная ПДК сероводорода - 0,008 мг/м3, в воздухе рабочей зоны - до 10 мг/м3.

Аммиак (NH3) - накапливается в воздухе закрытых помещений при гниении белковых продуктов, неисправности холодильных установок с аммиачным охлаждением, при авариях канализационных сооружений и др. Токсичен для организма.

Акролеин - продукт разложения жира при тепловой обработке, способен вызывать в производственных условиях аллергические заболевания. ПДК в рабочей зоне - 0,2 мг/м3.

Полициклические ароматические углеводороды (ПАУ) - отмечена их связь с развитием злокачественных новообразований. Наиболее распространенным и наиболее активным из них является 3-4-бенз(а)пирен, который выделяется при сжигании топлива: каменного угля, нефти, бензина, газа. Максимальное количество 3-4-бенз(а)пирена выделяется при сжигании каменного угля, минимальное - при сжигании газа. На пищевых предприятиях источником загрязнения воздуха ПАУ может являться длительное использование перегретого жира. Среднесуточная ПДК циклических ароматических углеводородов в атмосферном воздухе не должна превышать 0,001 мг/м3.

Механические примеси - пыль, частицы почвы, дыма, золы, сажи. Запыленность возрастает при недостаточном озеленении территории, неблагоустроенных подъездных путях, нарушении сбора и вывоза отходов производства, а также при нарушении санитарного режима уборки помещений (сухая или нерегулярная влажная уборка и др.). Кроме того, запыленность помещений увеличивается при нарушениях в устройстве и эксплуатации вентиляции, планировочных решениях (например, при недостаточной изоляции кладовой овощей от производственных цехов и др.).

Воздействие пыли на человека зависит от размеров пылевых частиц и их удельного веса. Наиболее опасны для человека пылинки размером менее 1 мкм в диаметре, т.к. они легко проникают в легкие и могут стать причиной их хронического заболевания (пневмокониоз). Пыль, содержащая примеси ядовитых химических соединений, оказывает на организм токсическое действие.

ПДК сажи и копоти жестко нормируется, ввиду содержания канцерогенных углеводородов (ПАУ): среднесуточная ПДК сажи - 0,05 мг/м3.

В кондитерских цехах большой мощности возможна запыленность воздуха сахарной и мучной пылью. Пыль мучная в виде аэрозолей способна вызывать раздражение дыхательных путей, а также аллергические заболевания. ПДК мучной пыли в рабочей зоне не должна превышать 6 мг/м3. В этих пределах (2-6 мг/м3) регламентируются предельно допустимые концентрации и других видов растительной пыли, содержащей не более 0,2 % соединений кремния.

В отличие от горячих и холодных планет нашей Солнечной системы, на планете Земля существуют условия, которые дают возможность жизни в определенной форме. Одним из главных условий является состав атмосферы, который дает всему живому возможность свободно дышать и защищает от смертельного излучения, царящего в космосе.

Из чего состоит атмосфера

Атмосфера Земли состоит из множества газов. В основном который занимает 77 %. Газ, без которого немыслима жизнь на Земле, занимает гораздо меньший объем, содержание кислорода в воздухе равно 21 % от всего объема атмосферы. Последние 2 % - смесь различных газов, включая аргон, гелий, неон, криптон и другие.

Атмосфера Земли поднимается на высоту 8 тыс. км. Воздух, пригодный для дыхания, есть только в нижнем слое атмосферы, в тропосфере, достигающей на полюсах - 8 км, ввысь, а над экватором - 16 км. С увеличением высоты воздух становится более разреженным и тем больше ощутима нехватка кислорода. Чтобы рассмотреть, какое содержание кислорода в воздухе бывает на разной высоте, приведем пример. На пике Эвереста (высота 8848 м) воздух вмещает этого газа в 3 раза меньше, чем над уровнем моря. Поэтому покорители высокогорных вершин - альпинисты - могут подняться на его вершину только в кислородных масках.

Кислород - главное условие выживания на планете

В начале существования Земли воздух, который ее окружал, не имел этого газа в своем составе. Это вполне подходило для жизни простейших - одноклеточных молекул, которые плавали в океане. Им кислород не был нужен. Процесс начался примерно 2 млн лет назад, когда первые живые организмы в результате реакции фотосинтеза начали выделять малые дозы этого газа, полученного в результате химических реакций, сначала в океан, затем в атмосферу. Жизнь развилась на планете и приняла разнообразные формы, большинство из которых не дожили до наших времен. Некоторые организмы со временем приспособились к жизни с новым газом.

Они научились использовать его силу безопасно внутри клетки, где она выступала в роли электростанции, для того чтобы добывать энергию из еды. Такой способ использования кислорода называется дыханием, и мы это делаем ежесекундно. Именно дыхание дало возможность для появления более сложных организмов и людей. За миллионы лет содержание в воздухе кислорода взлетело до современного уровня - около 21 %. Накопление этого газа в атмосфере способствовало созданию озонового слоя на высоте 8-30 км от поверхности земли. Вместе с этим планета получила защиту от пагубного действия ультрафиолетовых лучей. Дальнейшая эволюция жизненных форм на воде и на суше стремительно возросла в результате увеличения фотосинтеза.

Анаэробная жизнь

Хотя некоторые организмы адаптировались к повышающемуся уровню выделяемого газа, многие из простейших форм жизни, которые существовали на Земле, исчезли. Другие организмы выжили, прячась от кислорода. Некоторые из них сегодня живут в корнях бобовых, используя азот из воздуха для построения аминокислот для растений. Смертельный организм ботулизма - еще один "беженец" от кислорода. Он спокойно выживает в вакуумных упаковках с консервированными продуктами.

Какой кислородный уровень оптимален для жизни

Преждевременно рожденные малыши, легкие которых еще не полностью раскрыты для дыхания, попадают в специальные инкубаторы. В них содержание кислорода в воздухе по объему выше, и вместо обычных 21 % здесь установлен его уровень 30-40 %. Малыши, имеющие серьезные проблемы дыхания, окружаются воздухом со стопроцентным уровнем кислорода, чтобы предотвратить повреждение детского мозга. Нахождение в таких обстоятельствах совершенствует кислородный режим тканей, пребывающих в состоянии гипоксии, приводит в норму их жизненные функции. Но его чрезмерное количество в воздухе так же опасно, как и недостаток. Чрезмерное количество кислорода в крови ребенка может привести к повреждению кровеносных сосудов в глазах и спровоцировать утрату зрения. Это показывает двойственность свойств газа. Мы должны дышать им, чтобы жить, но его избыток иногда может стать отравой для организма.

Процесс окисления

При соединении кислорода с водородом или углеродом, совершается реакция, именуемая окислением. Этот процесс заставляет органические молекулы, являющиеся основанием жизни, распадаться. В человеческом организме окисление проходит следующим образом. Эритроциты крови собирают кислород из легких и разносят его по всему телу. Происходит процесс разрушения молекул еды, которую мы употребляем. Этот процесс освобождает энергию, воду и оставляет диосксид углерода. Последний выводится клетками крови обратно в легкие, и мы выдыхаем его в воздух. Человек может задохнуться, если ему помешать дышать дольше, чем 5 минут.

Дыхание

Рассмотрим содержание кислорода во вдыхаемом попадающий извне в легкие при вдыхании, именуется вдыхаемым, а воздух, который выходит наружу через дыхательную систему при выдохе, - выдыхаемым.

Он представляет собой смесь воздуха, заполнявшего альвеолы, с тем, который находится в дыхательных путях. Химический состав воздуха, который здоровый человек вдыхает и выдыхает в естественных условиях, практически не меняется и выражается такими цифрами.

Кислород - главная для жизни составляющая воздуха. Изменения количества этого газа в атмосфере невелики. Если у моря содержание в воздухе кислорода вмещает до 20,99 %, то даже в очень загрязненном воздухе индустриальных городов его уровень не падает ниже 20,5 %. Такие изменения не выявляют воздействия на человеческий организм. Физиологические нарушения проявляются тогда, когда процентное содержание кислорода в воздухе падает до 16-17 %. При этом наблюдается явная которая ведет к резкому падению жизнедеятельности, а при содержании в воздухе кислорода 7-8 % возможен летальный исход.

Атмосфера в разные эпохи

Состав атмосферы всегда оказывал воздействие на эволюцию. В разные геологические времена из-за природных катаклизмов наблюдались подъемы или падения уровня кислорода, и это влекло за собой изменение биосистемы. Примерно 300 миллионов лет назад содержание его в атмосфере поднялось до 35 %, при этом наблюдалось заселение планеты насекомыми гигантских размеров. Наибольшее вымирание живых существ в истории Земли случилось около 250 миллионов лет назад. Во время него более чем 90 % обитателей океана и 75 % жителей суши погибло. Одна из версий массового вымирания гласит, что виной тому оказалось низкое содержание в воздухе кислорода. Количество этого газа упало до 12 %, и это - в нижнем слое атмосферы до высоты 5300 метров. В нашу эпоху содержание кислорода в атмосферном воздухе доходит до 20,9 %, что на 0,7 % ниже, чем 800 тысяч лет назад. Эти цифры подтверждены учеными из Принстонского университета, которые исследовали пробы Гренландского и Атлантического льда, образовавшегося в то время. Замерзшая вода сберегла пузырьки воздуха, и этот факт помогает вычислить уровень кислорода в атмосфере.

Чему подчиняется уровень его в воздухе

Активное поглощение его из атмосферы может быть вызвано передвижением ледников. Отодвигаясь, они открывают гигантские площади органических пластов, потребляющих кислород. Еще одним поводом может быть остывание вод Мирового океана: его бактерии при пониженной температуре активнее поглощают кислород. Исследователи утверждают, что индустриальный скачок и вместе с ним сжигание огромного количества топлива особенного воздействия при этом не оказывают. Мировой океан охлаждается в течение 15 миллионов лет, и количество жизненно важного в атмосфере уменьшилось независимо от воздействия человека. Вероятно, на Земле совершаются некоторые природные процессы, ведущие к тому, что потребление кислорода становится выше его производства.

Воздействие человека на состав атмосферы

Поговорим о влиянии человека на состав воздуха. Тот уровень, который мы сегодня имеем, идеально подходит для живых существ, содержание кислорода в воздухе составляет 21 %. Баланс его и других газов определяется жизненным циклом в природе: животные выдыхают диоксид углерода, растения используют его и выделяют кислород.

Но не существует гарантии, что такой уровень будет постоянным всегда. Повышается количество диоксида углерода, выбрасываемого в атмосферу. Это происходит из-за использования топлива человечеством. А оно, как известно, образовалось из окаменелостей органического происхождения и в воздух попадает диоксид углерода. А тем временем самые большие растения нашей планеты, деревья, уничтожаются с нарастающей скоростью. За минуту исчезают километры леса. Это значит, что часть кислорода в воздухе постепенно падает и ученые уже сейчас бьют тревогу. Земная атмосфера - не безграничная кладовая и кислород в нее извне не поступает. Он все время вырабатывался вместе с развитием Земли. Нужно постоянно помнить, что этот газ производится растительностью в процессе фотосинтеза за счет потребления углекислого газа. И любое существенное уменьшение растительности в виде уничтожения лесов, неотвратимо снижает попадание кислорода в атмосферу, тем самым, нарушая его баланс.

Воздух – это естественная смесь различных газов. Больше всего в нем содержатся такие элементы, как азот (около 77%) и кислород, менее 2% составляют аргон, углекислый газ и прочие инертные газы.

Кислород, или О2 – второй элемент периодической таблицы и важнейший компонент, без которого вряд ли бы существовала жизнь на планете. Он участвует в разнообразных процессах , от которых зависит жизнедеятельность всего живого.

Вконтакте

Состав воздуха

О2 выполняет функцию окислительных процессов в человеческом теле , которые позволяют выделить энергию для нормальной жизнедеятельности. В состоянии покоя человеческий организм требует около 350 миллилитров кислорода , при тяжелых физических нагрузках это значение возрастает в три-четыре раза.

Сколько процентов кислорода в воздухе, которым мы дышим? Норма равна 20,95% . Выдыхаемый воздух содержит меньшее количество О2 – 15,5-16% . Состав выдыхаемого воздуха также включает углекислый газ, азот и другие вещества. Последующее понижение процентного содержания кислорода приводит к нарушению работы, а критическое значение 7-8% вызывает летальный исход .

Из таблица можно понять, например, что в выдыхаемом воздухе содержится очень много азота и дополнительных элементов, а вот О2 всего 16,3% . Содержание кислорода во вдыхаемом воздухе примерно составляет 20,95%.

Важно понять, что представляет собой такой элемент, как кислород. О2– наиболее распространенный на земле химический элемент , который не имеет цвета, запаха и вкуса. Он выполняет важнейшую функцию окисления в .

Без восьмого элемента периодической таблицы нельзя добыть огонь . Сухой кислород позволяет улучшить электрические и защитные свойства пленок, уменьшать их объемный заряд.

Содержится этот элемент в следующих соединениях:

  1. Силикаты – в них присутствует примерно 48% О2.
  2. (морская и пресная) – 89%.
  3. Воздух – 21%.
  4. Другие соединения в земной коре.

Воздух содержит в себе не только газообразные вещества, но и пары и аэрозоли , а также различные загрязняющие примеси. Это может быть пыль, грязь, другой различный мелкий мусор. В нем содержатся микробы , которые могут вызывать различные заболевания. Грипп, корь, коклюш, аллергены и прочие болезни – это лишь малый список негативных последствий, которые появляются при ухудшении качества воздуха и повышении уровня болезнетворных бактерий.

Процентное соотношение воздуха – это количество всех элементов, которые входят в его состав. Показать наглядно, из чего состоит воздух, а также процент кислорода в воздухе удобнее на диаграмме.

Диаграмма отображает, какого газа содержится больше в воздухе. Значения, приведенные на ней, будут немного отличаться для вдыхаемого и выдыхаемого воздуха.

Диаграмма — соотношение воздуха.

Выделяют несколько источников, из которых образуется кислород:

  1. Растения. Еще из школьного курса биологии известно, что растения выделяют кислород при поглощении углекислого газа.
  2. Фотохимическое разложение водяных паров. Процесс наблюдается под действием солнечного излучения в верхнем слое атмосферы.
  3. Перемешивание потоков воздуха в нижних атмосферных слоях.

Функции кислорода в атмосфере и для организма

Для человека огромное значение имеет так называемое парциальное давление , которое мог бы производить газ, если бы занимал весь занимаемый объем смеси. Нормальное парциальное давление на высоте 0 метров над уровнем моря составляет 160 миллиметров ртутного столба . Увеличение высоты вызывает уменьшение парциального давления. Этот показатель важен, так как от него зависит поступление кислорода во все важные органы и в .

Кислород нередко используется для лечения различных заболеваний . Кислородные баллоны, ингаляторы помогают органам человека нормально функционировать при наличии кислородного голодания.

Важно! На состав воздуха влияют многие факторы, соответственно, может меняться процент кислорода. Негативная экологическая ситуация приводит к ухудшению качества воздуха. В мегаполисах и крупных городских поселениях пропорция углекислого газа (СО2) будет больше, чем в небольших поселениях или на лесных и заповедных территориях. Большое влияние оказывает и высота – процентное содержание кислорода будет меньше в горах. Можно рассмотреть следующий пример – на горе Эверест, которая достигает высоты 8,8 км, концентрация кислорода в воздухе будет ниже в 3 раза, чем в низине. Для безопасного пребывания на высокогорных вершинах требуется использовать кислородные маски.

Состав воздуха изменялся с течением лет. Эволюционные процессы, природные катаклизмы привели к изменениям в , поэтому уменьшился процент кислорода , необходимый для нормальной работы биоорганизмов. Можно рассмотреть несколько исторических этапов:

  1. Доисторическая эпоха. В это время концентрация кислорода в атмосфере составляла около 36% .
  2. 150 лет назад О2 занимал 26% от общего воздушного состава.
  3. В настоящее время концентрация кислорода в воздухе составляет чуть менее 21% .

Последующее развитие окружающего мира может привести к дальнейшему изменению состава воздуха. На ближайшее время маловероятно, что концентрация О2 может быть ниже 14%, так как это вызовет нарушение работы организма .

К чему приводит недостаток кислорода

Малое поступление чаще всего наблюдается в душном транспорте, плохо проветриваемом помещении или на высоте. Понижение уровня содержания кислорода в воздухе может вызвать негативное влияние на организм . Происходит истощение механизмов, наибольшему влиянию подвергается нервная система. Причин, по которым организм страдает от гипоксии, можно выделить несколько:

  1. Кровяная нехватка. Вызывается при отравлении угарным газом . Подобная ситуация понижает кислородную составляющую крови. Это опасно тем, что кровь прекращает доставить кислород к гемоглобину.
  2. Циркуляторная нехватка. Она возможна при диабете, сердечной недостаточности . В такой ситуации ухудшается или становится невозможным транспорт крови.
  3. Гистотоксические факторы, влияющие на организм, могут вызвать потерю способности поглощать кислород. Возникает при отравлении ядами или из-за воздействия тяжелых .

По ряду симптомов можно понять, что организму требуется О2. В первую очередь повышается частота дыхания . Также увеличивается частота сердечных сокращений. Эти защитные функции призваны поставить кислород в легкие и обеспечить им кровь и ткани.

Недостаток кислорода вызывает головные боли, повышенную сонливость , ухудшение концентрации. Единичные случаи не так страшны, их довольно просто подкорректировать. Для нормализации дыхательной недостаточности врач выписывает бронхорасширяющие лекарства и другие средства. Если же гипоксия принимает тяжелые формы, такие как потеря координации человека или даже коматозное состояние , то лечение усложняется.

Если обнаружены симптомы гипоксии, важно незамедлительно обратиться к доктору и не заниматься самолечением, так как применение того или иного лекарственного средства зависит от причин нарушения. Для легких случаев помогает лечение кислородными масками и подушками, кровяная гипоксия требует переливания крови, а корректировка циркулярных причин возможна только при операции на сердце или сосуды.

Невероятное путешествие кислорода по нашему организму

Заключение

Кислород – важнейшая составляющая воздуха , без которой невозможно осуществление многих процессов на Земле. Воздушный состав менялся в течение десятков тысяч лет из-за эволюционных процессов, но в настоящее время количество кислорода в атмосфере достигло значения в 21% . Качество воздуха, которым дышит человек, влияет на его здоровье, поэтому необходимо следить за его чистотой в помещении и постараться сократить загрязнение окружающей среды.

Мы подробно рассмотрели как воздух попадает в легкие. Теперь посмотрим, что с ним происходит дальше.

Система кровообращения

Мы остановились на том, что кислород в составе атмосферного воздуха поступает в альвеолы, откуда через их тонкую стенку посредством диффузии переходит в капилляры, опутывающие альвеолы густой сетью. Капилляры соединяются в легочные вены, которые несут кровь, насыщенную кислородом, в сердце, а точнее в левое его предсердие. Сердце работает как насос, прокачивая кровь по всему организму. Из левого предсердия обогащенная кислородом кровь отправится в левый желудочек, а оттуда - в путешествие по большому кругу кровообращения, к органам и тканям. Обменявшись в капиллярах тела с тканями питательными веществами, отдав кислород и забрав углекислый газ, кровь собирается в вены и поступает в правое предсердие сердца, и большой круг кровообращения замыкается. Оттуда начинается малый круг.

Малый круг начинается в правом желудочке, откуда легочная артерия несет кровь на «зарядку» кислородом в легкие, разветвляясь и опутывая альвеолы капиллярной сетью. Отсюда снова - по легочным венам в левое предсердие и так до бесконечности. Чтобы представить себе эффективность этого процесса, вообразите себе, что время полного оборота крови составляет всего 20-23 секунды. За это время объем крови успевает полностью «обежать» и большой и малый круг кровообращения.

Чтобы насытить кислородом столь активно меняющуюся среду, как кровь, необходимо учитывать следующие факторы:

Количество кислорода и углекислого газа во вдыхаемом воздухе (состав воздуха)

Эффективность вентиляции альвеол (площадь соприкосновения, на которой происходит обмен газами между кровью и воздухом)

Эффективность альвеолярного газообмена (эффективность веществ и структур, обеспечивающих соприкосновение крови и газообмен)

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

В обычных условиях человек дышит атмосферным воздухом, имеющим относительно постоянный состав. В выдыхаемом воздухе всегда меньше кислорода и больше углекислого газа. Меньше всего кислорода и больше всего углекислого газа в альвеолярном воздухе. Различие в составе альвеолярного и выдыхаемого воздуха объясняется тем, что последний является смесью воздуха мертвого пространства и альвеолярного воздуха.

Альвеолярный воздух является внутренней газовой средой организма. От его состава зависит газовый состав артериальной крови. Регуляторные механизмы поддерживают постоянство состава альвеолярного воздуха, который при спокойном дыхании мало зависит от фаз вдоха и выдоха. Например, содержание С0 2 в конце вдоха всего на 0,2-0,3% меньше, чем в конце выдоха, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Кроме того, газообмен в легких протекает непрерывно, независимо от фаз вдоха или при выдоха, что способствует выравниванию состава альвеолярного воздуха. При глубоком дыхании, из-за нарастания скорости вентиляции легких, зависимость состава альвеолярного воздуха от вдоха и выдоха увеличивается. При этом надо помнить, что концентрация газов «на оси» воздушного потока и на его «обочине» тоже будет различаться: движение воздуха «по оси» будет быстрее и состав будет больше приближаться к составу атмосферного воздуха. В области верхушек легких альвеолы вентилируются менее эффективно, чем в нижних отделах легких, прилежащих к диафрагме.

Вентиляция альвеол

Газообмен между воздухом и кровью осуществляется в альвеолах. Все остальные составные части легких служат только для доставки воздуха к этому месту. Поэтому важна не общая величина вентиляции легких, а величина вентиляции именно альвеол. Она меньше вентиляции легких на величину вентиляции мертвого пространства. Так, при минутном объеме дыхания, равном 8000 мл и частоте дыхания 16 в минуту вентиляция мертвого пространства составит 150 мл х 16 = 2400 мл. Вентиляция альвеол будет равна 8000 мл - 2400 мл = 5600 мл. При том же самом минутном объеме дыхания 8000 мл и частоте дыхания 32 в минуту вентиляция мертвого пространства составит 150 мл х 32 = 4800 мл, а вентиляция альвеол 8000 мл - 4800 мл = 3200 мл, т.е. будет вдвое меньшей, чем в первом случае. Отсюда следует первый практический вывод , эффективность вентиляции альвеол зависит от глубины и частоты дыхания.

Величина вентиляции легких регулируется организмом таким образом, чтобы обеспечить постоянный газовый состав альвеолярного воздуха. Так, при повышении концентрации углекислого газа в альвеолярном воздухе минутный объем дыхания увеличивается, при снижении - уменьшается. Однако регуляторные механизмы этого процесса находятся не в альвеолах. Глубина и частота дыхания регулируются дыхательным центром на основании информации о количестве кислорода и углекислого газа в крови.

Обмен газов в альвеолах

Газообмен в легких осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь (около 500 л в сутки) и углекислого газа из крови в альвеолярный воздух (около 430 л в сутки). Диффузия происходит вследствие разности давления этих газов в альвеолярном воздухе и в крови.

Диффузия - взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении снижения концентрации вещества и ведет к равномерному распределению вещества по всему занимаемому им объему. Так, пониженная концентрация кислорода в крови ведет к его проникновению через мембрану воздушно-кровяного (аэрогематичеекого) барьера, избыточная концентрация углекислого газа в крови ведет к его выделению в альвеолярный воздух. Анатомически воздушно-кровяной барьер представлен легочной мембраной, которая, в свою очередь, состоит из эндотелиальных клеток капилляров, двух основных мембран, плоского альвеолярного эпителия, слоя сурфактанта. Толщина легочной мембраны всего 0,4-1,5 мкм.

Сурфактант - поверхностно-активное вещество, которое облегчает диффузию газов. Нарушение синтеза сурфактанта клетками легочного эпителия делает процесс дыхания практически невозможным из-за резкого замедления уровня диффузии газов.

Поступивший в кровь кислород и принесенный кровью углекислый газ могут находиться как в растворенном виде, так и в химически связанном. В обычных условиях в свободном (растворенном) состоянии переносится настолько малое количество этих газов, что им смело можно пренебречь при оценке потребностей организма. Для простоты будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.

Транспорт кислорода

Кислород транспортируется в виде оксигемоглобина. Оксигемоглобин - это комплекс гемоглобина и молекулярного кислорода.

Гемоглобин содержится в красных кровяных тельцах - эритроцитах . Эритроциты под микроскопом похожи на слегка приплюснутый бублик. Такая необычная форма позволяет эритроцитам взаимодействовать с окружающей кровью большей площадью, чем шарообразным клеткам (из тел, имеющих равный объем, шар имеет минимальную площадь). А кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр и добираясь в самые отдаленные уголки организма.

В 100 мл крови при температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика - время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол с соответствующими вентиляцией и кровоснабжением практически весь гемоглобин притекающей крови превращается в оксигемоглобин. А вот сама скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов.

Отсюда следует второй практический вывод : чтобы газообмен шел успешно, воздух должен «получать паузы», за время которых успевает выровняться концентрация газов в альвеолярном воздухе и притекающей крови, то есть обязательно должна присутствовать пауза между вдохом и выдохом.

Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин) зависит от содержания растворенного кислорода в жидкой части плазмы крови. Причем механизмы усвоения растворенного кислорода весьма эффективны.

Например, подъем на высоту 2 км над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе со 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3%. И, несмотря на снижение атмосферного давления, ткани продолжают успешно снабжаться кислородом.

В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала (например, в жировой ткани), большая часть оксигемоглобина не «отдает» молекулярный кислород - уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.

Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду) снижается при увеличении концентрации углекислого газа (эффект Бора) и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.

Отсюда становится легко понятным, как взаимосвязаны и сбалансированы относительно друг друга природные процессы. Изменения способности оксигемоглобина удерживать кислород имеет громадное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет и облегчает «отдачу» гемоглобином кислорода и облегчает течение обменных процессов.

В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он уже не отдаст ее в кровь.

Количество кислорода в крови

Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Кислородная емкость крови зависит от содержания в ней гемоглобина.

В артериальной крови содержание кислорода лишь немного (на 3-4%) ниже кислородной емкости крови. В обычных условиях в 1 л артериальной крови содержится 180-200 мл кислорода. Даже в тех случаях, когда в экспериментальных условиях человек дышит чистым кислородом, его количество в артериальной крови практически соответствует кислородной емкости. По сравнению с дыханием атмосферным воздухом количество переносимого кислорода увеличивается мало (на 3-4%).

Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, протекая по тканевым капиллярам, кровь отдает не весь кислород.

Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода. Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100.

Например:
(200-120): 200 х 100 = 40%.

В покое коэффициент утилизации кислорода организмом колеблется от 30 до 40%. При интенсивной мышечной работе он повышается до 50-60%.

Транспорт углекислого газа

Углекислый газ транспортируется кровью в трех формах. В венозной крови можно выявить около 58 об. % (580 мл/л) С02, причем из них лишь около 2,5 объемных % находятся в растворенном состоянии. Некоторая часть молекул С02 соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин (приблизительно 4,5 об.%). Остальное количество С02 химически связано и содержится в виде солей угольной кислоты (приблизительно 51 об. %).

Углекислый газ является одним из самых частых продуктов химических реакций обмена веществ. Он непрерывно образуется в живых клетках и оттуда диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту (С02 + Н20 = Н2С03).

Этот процесс катализируется (ускоряется в двадцать тысяч раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Т.о, процесс соединения углекислого газа с водой происходит практически только в эритроцитах. Но это процесс обратимый, который может изменять свое направление. В зависимости от концентрации углекислого газа карбоангидраза катализирует как образование угольной кислоты, так и расщепление ее на углекислый газ и воду (в капиллярах легких).

Благодаря указанным процессам связывания концентрация С02 в эритроцитах оказывается невысокой. Поэтому все новые количества С02 продолжают диффундировать внутрь эритроцитов. Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления, в результате во внутренней среде эритроцитов увеличивается количество воды. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Гемоглобин имеет большее сродство к кислороду, чем к углекислому газу, поэтому в условиях повышения парциального давления кислорода карбогемоглобин превращается сначала в дезоксигемоглобин, а затем в оксигемоглобин.

Кроме того, при превращении оксигемоглобина в гемоглобин происходит увеличением способности крови связывать двуокись углерода. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов калия (К+), необходимых для связывания угольной кислоты в форме углекислых солей - бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин. В таком виде двуокись углерода переносится к легким.

В капиллярах малого круга кровообращения концентрация двуокиси углерода снижается. От карбогемоглобина отщепляется С02. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на Н20 и С02. Круг завершен.

Осталось сделать еще одно примечание. Угарный газ (СО) обладает большим сродством к гемоглобину, чем углекислый газ (С02) и чем кислород. Поэтому отравления угарным газом столь опасны: вступая с устойчивую связь с гемоглобином, угарный газ блокирует возможность нормального транспорта газов и фактически «душит» организм. Жители больших городов постоянно вдыхают повышенные концентрации угарного газа. Это приводит к тому, что даже достаточное количество полноценных эритроцитов в условиях нормального кровообращения оказывается неспособным выполнить транспортные функции. Отсюда обмороки и сердечные приступы относительно здоровых людей в условиях автомобильных пробок.

  • ‹ Назад