Генетика поведения: Когда поведение зависит от генов. Генетическая обусловленность поведения сельскохозяйственных животных Температурочувствительные мутации у дрозофилы


Генетика поведения, область науки о поведении, основывающаяся на законах генетики и изучающая, в какой степени и каким образом различия в поведении определяются наследственными факторами. Основные методы исследования Г. п. на экспериментальных животных – селекция в сочетании с инбридингом (близкородственное скрещивание), при помощи которых изучаются механизмы наследования форм поведения, на человеке – статистический и генеалогический анализ в сочетании с близнецовым и цитогенетическим методами. (5).

Зависимость поведения от наследственных факторов – генное управление и контроль поведения – исследуется на различных уровнях организации живого: в биоценозах, популяциях, сообществах, на уровне организма, а также на физиологическом (орган, ткань, клетка) и молекулярном уровнях, Исследования генетики поведения имеют существенное значение для учения об индивидуальных различиях высшей нервной деятельности и выявления относительной роли врожденных и индивидуально приобретённых особенностей поведения, для объяснения роли генетически обусловленных особенностей поведения животных в популяции (для общественных животных – в стаде, стае и т.п.), а также для создания экспериментальных моделей нервных болезней.

Генетика поведения – это сравнительно молодая область знаний, оформившаяся около полувека тому назад на пересечении таких дисциплин, как собственно генетика, биология развития и комплекс наук о поведении, включающий психологию, этологию и экологическую физиологию. Задачей этого нового направления стало изучение онтогенеза обширного класса биологических функций организма, именуемых «поведением» и обеспечивающих по существу двустороннюю связь между индивидуумом и окружающей его экологической и социальной средой. Глобальность этой задачи уже сама по себе явилась причиной того, что в сферу интересов генетики поведения вскоре оказались втянутыми столь далёкие друг от друга разделы науки и практики, как эндокринология и психиатрия, биохимия и педагогика, нейрофизиология и лингвистика, антропология и селекция сельскохозяйственных животных. Кроме того, коль скоро уже давно стало очевидным, что поведение является одним из важнейших факторов эволюционного процесса, генетика поведения в последние годы всё теснее увязывается с эволюционным учением, становясь неотъемлемой частью современной эволюционной биологии.

Генетический анализ поведения животных

Генетические исследования на человеке имеют целый ряд вполне понятных ограничений. В связи с этим представляют интерес исследования генетических основ поведения у животных. Здесь можно применять методы селекции, получение инбредных линий, современные методы генной инженерии, избирательного выключения определённых генов, вызывать мутации и т.д. Инбредные линии, получаемые при длительном близкородственном скрещивании (не менее 20 поколений), представляют собой идентичных по генотипу животных, поэтому все отличия, которые можно наблюдать среди животных одной линии, связаны с воздействием среды.

Генетика поведения насекомых

Приведём пример генетического анализа поведения, который довольно часто рассматривается в учебной литературе. Речь пойдёт о пчёлах и о заболевании под названием «американская личиночная гниль». Существует линия пчёл, устойчивых к этой болезни, потому что в случае заболевания личинки пчелы немедленно распечатывают ячейку, в которой она находится, и удаляют её из улья. Таким образом предупреждается распространение болезни, причём устойчивость к ней связана с характерным поведением! При скрещивании устойчивых к болезни пчёл с неустойчивыми получают гибриды первого поколения (F1), которые не чистят ульи. Отсюда ясно, что аллель или аллели, обусловливающие этот тип поведения, рецессивные. Гибриды первого поколения F1 снова скрещивают с устойчивыми пчёлами (так называемое анализирующее скрещивание – с рецессивными гомозиготными особями). В результате у потомства наблюдается четыре варианта фенотипов в соотношении 1:1:1:1. Вот эти варианты:

– пчёлы открывают ячейки, удаляют поражённые личинки;

– открывают ячейки, но не удаляют поражённые личинки;

– не открывают ячейки, но удаляют поражённые личинки, если ячейку откроет экспериментатор;

– не открывают ячейки, не удаляют поражённые личинки.

Таким образом, очевидно, что этот довольно сложный поведенческий акт контролируется генами всего в двух локусах. Один аллельный ген определяет действия по вскрытию ячейки, другой связан с удалением поражённой личинки.

В данном случае впечатляет тот факт, что довольно сложные действия могут контролироваться всего одним геном.

У плодовых мушек – дрозофил, которые долгие годы являлись излюбленным объектом генетиков – выявлено огромное количество мутаций, затрагивающих поведение. Так, мутация dunce приводит к нарушению способности к выработке условных рефлексов. Мутаций, так или иначе нарушающих обучение, известно несколько. Важно, что все эти дефекты связаны с нарушением метаболизма так называемых вторичных мессенджеров (прежде всего циклической АМФ), играющих большую роль во внутриклеточной сигнализации и синаптической пластичности.

Есть мутации, приводящие к высокой и низкой половой активности, к избеганию определённых запахов, меняющие двигательную активность, вплоть до того, что есть мутация, определяющая, как дрозофила складывает крылья, – правое поверх левого или наоборот.

Иногда встречаются примеры весьма специфичных отклонений в поведении. Так, при мутации fru (от fruitless – бесплодный) наблюдаются следующие нарушения полового поведения у самцов: они не ухаживают за самками, а ухаживают только за самцами, гомозиготными по данной мутации, и стимулируют нормальных самцов ухаживать за собой. Получилось нечто вроде модели формирования гомосексуального поведения.

Вообще складывается впечатление, что большинство поведенческих актов у дрозофил генетически предопределено во всех деталях.

Исследования способности к обучению животных

Одним из самых важных свойств поведения животных является способность к обучению. Исследования на животных дают возможность провести селекционные эксперименты. Одним из первых на крысах такой эксперимент поставил Трайон. Он проводил селекцию по признаку обучаемости животных, которые должны были находить правильный путь к подкормке, помещённой в сложном 17-тупиковом лабиринте. Отбирались хорошо и плохо обучаемые животные, которые в дальнейшем скрещивались уже только между собой. Регулярная селекция дала очень быстрый результат – начиная с восьмого поколения показатели обучаемости у «умных» и у «глупых» крыс (число ошибочных пробежек в лабиринте) же не перекрывались. Селекция проводилась до 22-го поколения, в результате чего были получены две группы крыс – хорошо обучавшихся (bright ) и плохо – (dull ). При одинаковых условиях выращивания и тестирования различия между этими группами обусловлены только различиями в генотипе.

В дальнейшем было получено множество линий, особенно у мышей, различавшихся по способности к различным формам обучения. Подобные линии были отобраны по способности обучаться в Т-образном лабиринте, по обучению к активному и пассивному избеганию, плаванию в водном тесте Морриса. Иногда задача, которую выполняет животное, весьма сложна. Так, например, были получены линии мышей, хорошо и плохо обучавшиеся пищедобывательному двигательному условному рефлексу. Мыши получали подкрепление, когда они прыгали в ответ на звуковой или световой стимул на разные полочки. При этом можно отметить некоторые общин закономерности:

1) обычно имеет место большие разнообразие признака в исходной популяции;

2) хотя селекционный ответ может проявляться очень рано, и разница между линиями обнаруживается уже через 2–3 поколения, для появления стабильных достоверных отличий между линиями требуется гораздо больше поколений (около 10–20).

Высокий разброс исходных значений признака и постепенное развитие селекционного ответа являются свидетельством полигенной природы признака. Иными словами проявление данного признака в фенотипе зависит от сравнительно большого числа генов. Подобным же образом обстоит дело с большинством черт поведения млекопитающих.

Существует ещё одна проблема, связанная с опытами по селекции. Селекция проводится при тестировании какой-то определённой задачи. Естественно, возникает вопрос: насколько способность решать данную задачу коррелирует со способностью к другим видам обучения? Однозначного ответа на этот вопрос нет.

Например, когда стали более подробно изучать способность к обучению вообще на линиях крыс, полученных Трайоном (bright и dull ), то выяснилось, что хорошо обучавшиеся (bright ) быстрее обучаются пищедобывательному поведению, а крысы dull в свою очередь демонстрируют лучшие показатели в задачах на оборонительную реакцию. Таким образом, здесь проблема обучения может быть перенесена в плоскость мотивационных механизмов. Известно, что мотивация может исключительно сильно сказываться на результатах обучения.

Получается, что крысы линии bright сильнее мотивируются голодом, тогда как крысы dull сильнее мотивируются страхом в угрожающих ситуациях. Точно также, как мотивация, на успешность обучения могут влиять сенсорные способности, уровень двигательной активности, эмоциональность животных. Соответственно гены, влияющие на активность данных качеств, могут оказывать воздействие на обучение.

Однако некоторые линии демонстрируют различия и в более общих способностях к обучению. Так, мыши линии DBA/2J обучаются лучше, чем животные линии CBA , что подтверждается в целом ряде тестов: при пищевом подкреплении в лабиринте, в челночной камере при выработке условно-рефлекторной реакции активного избегания, при оперантном обучении. Значит, есть некие генетически определяемые свойства нервной системы, которые влияют на способность реализации различных типов обучения. Список мутаций, нарушающих обучение и память у мышей, быстро расширяется.

Таблица 1. Гены мыши, локализованные на определённых хромосомах и играющие важную роль в обучении и памяти

Хромосома

Обучение и память

У крыс Трайона были отмечены и различия в характеристиках памяти, что, безусловно, сказывалось на результатах тестирования. Так, оказалось, что у крыс линии bright быстрее происходит консолидация – упрочение следов памяти, переход их в устойчивую форму. Можно прибегнуть к воздействиям, нарушающим краткосрочную память, например, применить особую форму электрошока, вызывающую амнезию. Оказалось, что уже спустя 75 с после обучения электрошоковую амнезию не удаётся вызвать у крыс линии bright , тогда как на крыс линии dull электрошоковая процедура по прежнему оказывает воздействие.

Разная скорость консолидации, по-видимому определяет различия в успешности формирования навыков ориентации в лабиринте. Что произойдёт, если крысам линии dull будет предоставлено время, достаточное для запоминания? Исследования показали, что, когда интервалы между попытками составляли 30 с, крысы линии bright обучались намного быстрее крыс линии dull , как это и должно было быть. Но когда интервал увеличивали до 5 минут, разница в обучении между линиями существенно уменьшалась. Если же крысам вообще давали только одну попытку в день, показатели обучаемости обеих линий становились одинаковыми. Скорость приобретения навыка и скорость консолидации может определяться разными механизмами!

Важный вывод: подбор условий обучения может уменьшить или даже свести на нет разницу в генетически обусловленных способностях.

В настоящее время получен целый ряд линий мышей, резко отличающихся по скорости консолидации памяти. Имеется линия (C3H/He ), у которой обучение возможно только пои непрерывной тренировке. Есть линия (DBA/2J ), у которой обучение, наоборот, идёт значительно успешнее при увеличении интервалов между отдельными сессиями тренировки. И наконец, введена линия (BALB/c), для которой характер интервалов между экспериментальными сессиями не сказывается на результатах обучения. Данный подход создаёт, таким образом, уникальные возможности для изучения механизмов памяти.

Ещё одно направление исследований на животных – это выяснение влияния окружающей среды на формирование свойств поведения. Вновь вернёмся к крысам линий bright и dull . Можно поставить эксперимент по выращиванию этих крыс в разных условиях. Одна группа (контрольная) выращивается в обычных условиях вивария. Для другой создаётся «обогащённая» среда – клетки больших размеров с раскрашенными стенками, наполненные различными предметами, зеркалами, мечами, трапами, лестницами, туннелями. Наконец, третьей группе предоставляется «обеднённая» среда, где сильно ограничен приток сенсорных раздражителей и ограничены возможности поисковой и исследовательской активности. На графике 1 обогащённая среда обозначена как «хорошие» условия, обеднённая среда – как «плохие». Нормальные условия соответствуют контрольной группе.

График 1. Результаты обучения в лабиринте линий «умных» и «глупых» крыс, выросших в ухудшенных, обычных и улучшенных условиях. (15).

Результаты контрольной группы соответствуют ожиданию – крысы линии bright при обучении в лабиринте совершают намного меньше ошибок по сравнения с крысами линии dull . Однако для крыс, воспитанных в условиях обогащённой среды, эта разница практически сходит на нет, причём в основном за счёт резкого уменьшения ошибок у «глупой» линии крыс. В случае воспитания в условиях обеднённой среды разница между двумя линиями также исчезает, причём на этот раз в основном за счёт резкого увеличения числа ошибок у «умной» линии крыс.

Здесь мы касаемся очень важной проблемы – существования мощных механизмов пластичности нервной системы, которые способны компенсировать весьма существенные дефекты. Многочисленные исследования по выращиванию крыс в обогащённой среде показали, что сравнительно быстро – за 25–30 дней возникают весьма существенные морфологические отличия на уровне коры больших полушарий. У животных, содержащихся в обогащённой среде, отмечается более толстая кора, большие размеры нейронов, на 10–20% увеличивается число дендритных отростков, приходящихся на один нейрон. Всё это приводит к увеличению на 20% числа синапсов, приходящихся на один нейрон. В конечном счёте речь идёт о миллиардах новых синапсов, что резко увеличивает возможности нервной системы. Особенно важен тот факт, что данный потенциал пластичности сохраняется практически всё время. Опыты на взрослых животных привели к аналогичным результатам. Сходным образом обогащённая среда оказывает влияние и на развитие ребёнка.

Видео: О влиянии генетики на поведение и характер.



Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

«ГЕНЕТИКА ПОВЕДЕНИЯ: НАСКОЛЬКО И КАК ГЕНЫ КОНТРОЛИРУЮТ ПОВЕДЕНИЕ ЛИЧНОСТИ»

Введение

Демографические, медицинские и технические изменения, связанные с изменением общества происходят сегодня настолько быстро, что популяции не успевают адаптироваться. Поэтому нам необходимо лучше понимать поведение человека и его генетические основы.

Также при обучении и воспитании детей важно знать и учитывать, какие способности ребёнка генетически обусловлены, и какие способности лучше поддаются влиянию извне.

А при усыновлении детей родителям необходима информация о генетической природе человека, чтобы знать, какие качества личности у ребёнка останутся от биологических родителей, а какие можно изменить.

Кроме того, генетика поведения важна для лечения и профилактики некоторых заболеваний, например алкоголизма, наркомании и табакокурения, которые являются на сегодняшний день огромной проблемой.

Исходя из написанного выше, мы можем говорить о высокой степени актуальности изучаемого нами вопроса.

Цель: изучить насколько и как гены могут контролировать поведение.

Для достижения поставленной цели предлагается последовательное решение в рамках курсовой работы следующих задач :

1) изучить генетику поведения животных;

2) изучить последние открытия о возможном генном контроле таких признаков человека как темперамент и уровень интеллекта;

3) изучить генетику зависимостей человека.

Краткая история вопроса

О генетике

Генетика - наука о наследственности и изменчивости организмов. Генетика - дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами. Она призвана раскрыть законы воспроизведения живого по поколениям, появление у организмов новых свойств, законы индивидуального развития особи и материальной основы исторических преобразований организмов в процессе эволюции. Первые две задачи решают теория гена и теория мутаций. Выяснение сущности воспроизведения для конкретного разнообразия форм жизни требует изучения наследственности у представителей, находящихся на разных ступенях эволюционного развития. Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек. На фоне видовой и другой специфики в явлениях наследственности для всех живых существ обнаруживаются общие законы. Их существование показывает единство органического мира. (11).

История генетики начинается с 1900 года, когда независимо друг от друга Корренс, Герман и де Фриз открыли и сформулировали законы наследования признаков, когда была переиздана работа Г. Менделя «Опыты над растительными гибридами». С того времени генетика в своем развитии прошла три хорошо очерченных этапа - эпоха Классической генетики (1900-1930), эпоха неоклассицизма (1930-1953) и эпоха синтетической генетики, которая началась в 1953 году. На первом этапе складывался язык генетики, разрабатывались методики исследования, были обоснованы фундаментальные положения, открыты основные законы. В эпоху неоклассицизма стало возможным вмешательство в механизм изменчивости, дальнейшее развитие получило изучение гена и хромосом, разрабатывается теория искусственного метагенеза, что позволило генетике из теоретической дисциплины перейти к прикладной. Новый этап в развитии генетики стал возможным благодаря расшифровке структуры «золотой» молекулы ДНК в 1953 г. Дж. Уотсоном и Ф. Криком. Генетика переходит на молекулярный уровень исследований. Стало возможным расшифровать структуру гена, определить материальные основы и механизмы наследственности и изменчивости. Генетика научилась влиять на эти процессы, направлять их в нужное русло. Появились широкие возможности соединения теории и практики. (17).

Генетика поведения , область науки о поведении, основывающаяся на законах генетики и изучающая, в какой степени и каким образом различия в поведении определяются наследственными факторами. Основные методы исследования Г. п. на экспериментальных животных - селекция в сочетании с инбридингом (близкородственное скрещивание), при помощи которых изучаются механизмы наследования форм поведения, на человеке - статистический и генеалогический анализ в сочетании с близнецовым и цитогенетическим методами. (5).

Зависимость поведения от наследственных факторов - генное управление и контроль поведения - исследуется на различных уровнях организации живого: в биоценозах, популяциях, сообществах, на уровне организма, а также на физиологическом (орган, ткань, клетка) и молекулярном уровнях, Исследования генетики поведения имеют существенное значение для учения об индивидуальных различиях высшей нервной деятельности и выявления относительной роли врожденных и индивидуально приобретённых особенностей поведения, для объяснения роли генетически обусловленных особенностей поведения животных в популяции (для общественных животных - в стаде, стае и т.п.), а также для создания экспериментальных моделей нервных болезней. (3).

Генетика поведения - это сравнительно молодая область знаний, оформившаяся около полувека тому назад на пересечении таких дисциплин, как собственно генетика, биология развития и комплекс наук о поведении, включающий психологию, этологию и экологическую физиологию. Задачей этого нового направления стало изучение онтогенеза обширного класса биологических функций организма, именуемых «поведением» и обеспечивающих по существу двустороннюю связь между индивидуумом и окружающей его экологической и социальной средой. Глобальность этой задачи уже сама по себе явилась причиной того, что в сферу интересов генетики поведения вскоре оказались втянутыми столь далёкие друг от друга разделы науки и практики, как эндокринология и психиатрия, биохимия и педагогика, нейрофизиология и лингвистика, антропология и селекция сельскохозяйственных животных. Кроме того, коль скоро уже давно стало очевидным, что поведение является одним из важнейших факторов эволюционного процесса, генетика поведения в последние годы всё теснее увязывается с эволюционным учением, становясь неотъемлемой частью современной эволюционной биологии. (16).

1. Генетический анализ поведения ж ивотных

Генетические исследования на человеке имеют целый ряд вполне понятных ограничений. В связи с этим представляют интерес исследования генетических основ поведения у животных. Здесь можно применять методы селекции, получение инбредных линий, современные методы генной инженерии, избирательного выключения определённых генов, вызывать мутации и т.д. Инбредные линии, получаемые при длительном близкородственном скрещивании (не менее 20 поколений), представляют собой идентичных по генотипу животных, поэтому все отличия, которые можно наблюдать среди животных одной линии, связаны с воздействием среды. (10).

1.1 Генетика поведения насекомых

генетика зависимость животное контроль

Приведём пример генетического анализа поведения, который довольно часто рассматривается в учебной литературе. Речь пойдёт о пчёлах и о заболевании под названием «американская личиночная гниль». Существует линия пчёл, устойчивых к этой болезни, потому что в случае заболевания личинки пчелы немедленно распечатывают ячейку, в которой она находится, и удаляют её из улья. Таким образом предупреждается распространение болезни, причём устойчивость к ней связана с характерным поведением! При скрещивании устойчивых к болезни пчёл с неустойчивыми получают гибриды первого поколения (F1), которые не чистят ульи. Отсюда ясно, что аллель или аллели, обусловливающие этот тип поведения, рецессивные. Гибриды первого поколения F1 снова скрещивают с устойчивыми пчёлами (так называемое анализирующее скрещивание - с рецессивными гомозиготными особями). В результате у потомства наблюдается четыре варианта фенотипов в соотношении 1:1:1:1. Вот эти варианты:

Пчёлы открывают ячейки, удаляют поражённые личинки;

Открывают ячейки, но не удаляют поражённые личинки;

Не открывают ячейки, но удаляют поражённые личинки, если ячейку откроет экспериментатор;

Не открывают ячейки, не удаляют поражённые личинки.

Таким образом, очевидно, что этот довольно сложный поведенческий акт контролируется генами всего в двух локусах. Один аллельный ген определяет действия по вскрытию ячейки, другой связан с удалением поражённой личинки.

В данном случае впечатляет тот факт, что довольно сложные действия могут контролироваться всего одним геном.

У плодовых мушек - дрозофил, которые долгие годы являлись излюбленным объектом генетиков - выявлено огромное количество мутаций, затрагивающих поведение. Так, мутация dunce приводит к нарушению способности к выработке условных рефлексов. Мутаций, так или иначе нарушающих обучение, известно несколько. Важно, что все эти дефекты связаны с нарушением метаболизма так называемых вторичных мессенджеров (прежде всего циклической АМФ), играющих большую роль во внутриклеточной сигнализации и синаптической пластичности.

Есть мутации, приводящие к высокой и низкой половой активности, к избеганию определённых запахов, меняющие двигательную активность, вплоть до того, что есть мутация, определяющая, как дрозофила складывает крылья, - правое поверх левого или наоборот.

Иногда встречаются примеры весьма специфичных отклонений в поведении. Так, при мутации fru (от fruitless - бесплодный) наблюдаются следующие нарушения полового поведения у самцов: они не ухаживают за самками, а ухаживают только за самцами, гомозиготными по данной мутации, и стимулируют нормальных самцов ухаживать за собой. Получилось нечто вроде модели формирования гомосексуального поведения.

Вообще складывается впечатление, что большинство поведенческих актов у дрозофил генетически предопределено во всех деталях. (8).

1.2 Исследования способности к обучению животных

Одним из самых важных свойств поведения животных является способность к обучению. Исследования на животных дают возможность провести селекционные эксперименты. Одним из первых на крысах такой эксперимент поставил Трайон. Он проводил селекцию по признаку обучаемости животных, которые должны были находить правильный путь к подкормке, помещённой в сложном 17-тупиковом лабиринте. Отбирались хорошо и плохо обучаемые животные, которые в дальнейшем скрещивались уже только между собой. Регулярная селекция дала очень быстрый результат - начиная с восьмого поколения показатели обучаемости у «умных» и у «глупых» крыс (число ошибочных пробежек в лабиринте) же не перекрывались. Селекция проводилась до 22-го поколения, в результате чего были получены две группы крыс - хорошо обучавшихся (bright ) и плохо - (dull ). При одинаковых условиях выращивания и тестирования различия между этими группами обусловлены только различиями в генотипе.

В дальнейшем было получено множество линий, особенно у мышей, различавшихся по способности к различным формам обучения. Подобные линии были отобраны по способности обучаться в Т-образном лабиринте, по обучению к активному и пассивному избеганию, плаванию в водном тесте Морриса. Иногда задача, которую выполняет животное, весьма сложна. Так, например, были получены линии мышей, хорошо и плохо обучавшиеся пищедобывательному двигательному условному рефлексу. Мыши получали подкрепление, когда они прыгали в ответ на звуковой или световой стимул на разные полочки. (9). При этом можно отметить некоторые общин закономерности:

обычно имеет место большие разнообразие признака в исходной популяции;

хотя селекционный ответ может проявляться очень рано, и разница между линиями обнаруживается уже через 2-3 поколения, для появления стабильных достоверных отличий между линиями требуется гораздо больше поколений (около 10-20).

Высокий разброс исходных значений признака и постепенное развитие селекционного ответа являются свидетельством полигенной природы признака. Иными словами проявление данного признака в фенотипе зависит от сравнительно большого числа генов. Подобным же образом обстоит дело с большинством черт поведения млекопитающих.

Существует ещё одна проблема, связанная с опытами по селекции. Селекция проводится при тестировании какой-то определённой задачи. Естественно, возникает вопрос: насколько способность решать данную задачу коррелирует со способностью к другим видам обучения? Однозначного ответа на этот вопрос нет.

Например, когда стали более подробно изучать способность к обучению вообще на линиях крыс, полученных Трайоном (bright и dull ), то выяснилось, что хорошо обучавшиеся (bright ) быстрее обучаются пищедобывательному поведению, а крысы dull в свою очередь демонстрируют лучшие показатели в задачах на оборонительную реакцию. Таким образом, здесь проблема обучения может быть перенесена в плоскость мотивационных механизмов. Известно, что мотивация может исключительно сильно сказываться на результатах обучения.

Получается, что крысы линии bright сильнее мотивируются голодом, тогда как крысы dull сильнее мотивируются страхом в угрожающих ситуациях. Точно также, как мотивация, на успешность обучения могут влиять сенсорные способности, уровень двигательной активности, эмоциональность животных. Соответственно гены, влияющие на активность данных качеств, могут оказывать воздействие на обучение.

Однако некоторые линии демонстрируют различия и в более общих способностях к обучению. Так, мыши линии DBA /2 J обучаются лучше, чем животные линии CBA , что подтверждается в целом ряде тестов: при пищевом подкреплении в лабиринте, в челночной камере при выработке условно-рефлекторной реакции активного избегания, при оперантном обучении. Значит, есть некие генетически определяемые свойства нервной системы, которые влияют на способность реализации различных типов обучения. Список мутаций, нарушающих обучение и память у мышей, быстро расширяется.

Таблица 1. Гены мыши, локализованные на определённых хромосомах и играющие важную роль в обучении и памяти

Хромосома

Обучение и память

Greb 1

У крыс Трайона были отмечены и различия в характеристиках памяти, что, безусловно, сказывалось на результатах тестирования. Так, оказалось, что у крыс линии bright быстрее происходит консолидация - упрочение следов памяти, переход их в устойчивую форму. Можно прибегнуть к воздействиям, нарушающим краткосрочную память, например, применить особую форму электрошока, вызывающую амнезию. Оказалось, что уже спустя 75 с после обучения электрошоковую амнезию не удаётся вызвать у крыс линии bright , тогда как на крыс линии dull электрошоковая процедура по прежнему оказывает воздействие.

Разная скорость консолидации, по-видимому определяет различия в успешности формирования навыков ориентации в лабиринте. Что произойдёт, если крысам линии dull будет предоставлено время, достаточное для запоминания? Исследования показали, что, когда интервалы между попытками составляли 30 с, крысы линии bright обучались намного быстрее крыс линии dull , как это и должно было быть. Но когда интервал увеличивали до 5 минут, разница в обучении между линиями существенно уменьшалась. Если же крысам вообще давали только одну попытку в день, показатели обучаемости обеих линий становились одинаковыми. Скорость приобретения навыка и скорость консолидации может определяться разными механизмами!

Важный вывод: подбор условий обучения может уменьшить или даже свести на нет разницу в генетически обусловленных способностях.

В настоящее время получен целый ряд линий мышей, резко отличающихся по скорости консолидации памяти. Имеется линия (C 3 H / He ), у которой обучение возможно только пои непрерывной тренировке. Есть линия (DBA /2 J ), у которой обучение, наоборот, идёт значительно успешнее при увеличении интервалов между отдельными сессиями тренировки. И наконец, введена линия (BALB/c), для которой характер интервалов между экспериментальными сессиями не сказывается на результатах обучения. Данный подход создаёт, таким образом, уникальные возможности для изучения механизмов памяти.

Ещё одно направление исследований на животных - это выяснение влияния окружающей среды на формирование свойств поведения. Вновь вернёмся к крысам линий bright и dull . Можно поставить эксперимент по выращиванию этих крыс в разных условиях. Одна группа (контрольная) выращивается в обычных условиях вивария. Для другой создаётся «обогащённая» среда - клетки больших размеров с раскрашенными стенками, наполненные различными предметами, зеркалами, мечами, трапами, лестницами, туннелями. Наконец, третьей группе предоставляется «обеднённая» среда, где сильно ограничен приток сенсорных раздражителей и ограничены возможности поисковой и исследовательской активности. На таблице 2 обогащённая среда обозначена как «хорошие» условия, обеднённая среда - как «плохие». Нормальные условия соответствуют контрольной группе.

Таблица 2. Результаты обучения в лабиринте линий «умных» и «глупых» крыс, выросших в ухудшенных, обычных и улучшенных условиях. (15).

Результаты контрольной группы соответствуют ожиданию - крысы линии bright при обучении в лабиринте совершают намного меньше ошибок по сравнения с крысами линии dull . Однако для крыс, воспитанных в условиях обогащённой среды, эта разница практически сходит на нет, причём в основном за счёт резкого уменьшения ошибок у «глупой» линии крыс. В случае воспитания в условиях обеднённой среды разница между двумя линиями также исчезает, причём на этот раз в основном за счёт резкого увеличения числа ошибок у «умной» линии крыс.

Здесь мы касаемся очень важной проблемы - существования мощных механизмов пластичности нервной системы, которые способны компенсировать весьма существенные дефекты. Многочисленные исследования по выращиванию крыс в обогащённой среде показали, что сравнительно быстро - за 25-30 дней возникают весьма существенные морфологические отличия на уровне коры больших полушарий. У животных, содержащихся в обогащённой среде, отмечается более толстая кора, большие размеры нейронов, на 10-20% увеличивается число дендритных отростков, приходящихся на один нейрон. Всё это приводит к увеличению на 20% числа синапсов, приходящихся на один нейрон. В конечном счёте речь идёт о миллиардах новых синапсов, что резко увеличивает возможности нервной системы. Особенно важен тот факт, что данный потенциал пластичности сохраняется практически всё время. Опыты на взрослых животных привели к аналогичным результатам.

Сходным образом обогащённая среда оказывает влияние и на развитие ребёнка. (1).

2. Последние открытия о возможном генном контроле таких признаков человека как темперамент и у ровень интеллекта

2.1 Генетика темперамента

В современной генетике поведения речь чаще идёт о характеристиках личности, поскольку понятие темперамент, особенно в зарубежной литературе, в настоящее время связывается, главным образом, с типом эмоциональных реакций (особенно их выражением), а также с характерными или привычными склонностями личности.

В качестве метода выявления основных особенностей личности весьма популярен подход определения пяти факторов, так называемой «большой пятёрки» (Big Five ).

Экставерсия (extraversion ). Даются оценки интроверсии - экстраверсии, общительности - нелюдимости, уверенности - застенчивости.

Способность к согласию (agreeableness ). Оценивается уступчивость - неуступчивость, дружелюбность - безразличие к другим, послушность - враждебность.

Добросовестность (conscientiousness ). Это самый неопределённый фактор.

Нейротицизм (neuroticism ). Выясняется уровень эмоциональной стабильности, приспособляемости - тревожности, зависимости - независимости.

Откровенность, прямота (openness ). Определяется лёгкость приспособляемости - подчинение, непослушность - покорность.

При анализе наследуемости отдельных компонентов этого списка самые высокие значения были получены для экстраверсии (0,49) и откровенности (0,45), а наименьшие - для способности к согласию (0,35) и добросовестности (0,38). Для всех показателей значение вклада общей среды в изменчивость осталось близким к нулю (от 0,02 до 0,11). Можно сделать вывод, что в изменчивости личностных характеристик основную роль играют индивидуальные средовые эффекты либо генотип-средовые взаимодействия.

При изучении симптомов тревожности и боязливости (компонента эмоциональности, называемого нейротицизмом по другим методикам) было обнаружено, что примерно половина наблюдавшейся изменчивости может быть отнесена на счёт генетических факторов. Эти данные были получены на основе опросов монозиготных близнецов, как воспитанных вместе, так и разлучённых. В исследованиях, в которых роме самоотчётов привлекались оценки поведения, данные сверстниками, были получены сходные результаты.

Из более специфичных свойств личности следует помянуть степень радикализма и консерватизма в мышлении. Вопреки ожиданиям оказалось, что для этих качеств характерны довольно высокие оценки наследуемости (h 2 равен соответственно 0,65 и 0,54). Даже для такой черты, как авторитарность, было получено значение h 2 = 0,62, причём обнаружилось, что по этой характеристике наблюдается неожиданно высокое значение ассортативности браков (0,68!).

В рамках большого миннесотского исследования близнецов, выросших порознь, были проведены самые разнообразные тесты свойств личности и темперамента, а также таких качеств, как профессиональные интересы, занятия на досуге, социальные отношения. Выяснилось, что монозиготные близнецы, выросшие вместе, обнаруживали примерно такую же степень сходства, как и разлучённые близнецы. (4).

2.2 Интеллект

Коэффициент интеллекта (IQ ) представляет собой наиболее интенсивно изучавшийся в генетических исследованиях психологический показатель. Различия в умственных способностях человека очевидны, они могут быть очень значительными, но насколько точно они отражаются в психометрических показателях? Использование тестов, иногда чрезмерное, приводит к достаточно серьёзным противоречиям, поскольку до сих пор неизвестно, что имеет отношение к интеллекту, а что нет. Обычно подчёркивают важность таких свойств, как способность к обучению и адаптации. В последнее время добавилось понятие метакогнитивных способностей, под которыми понимают способность понимать и контролировать себя самого.

Очень важно помнить, что в этих исследованиях изучается «психометрический интеллект», который показывает различия между людьми в выполнении тестов. Эти тесты по-разному отражают различные аспекты поведения человека и охватывают не все ментальные способности. Однако для очень широкого спектра этих способностей существует система тестов, позволяющая их более или менее адекватно оценивать и обладающая валидностью. (6).

Общий, или генеральный, фактор (g ) когнитивных способностей

Понятие общего, или генерального, фактора (g) интеллекта было введено Спирменом (1904 г.), который обнаружил значительную корреляцию в успешности решения самых разнообразных тестов, оценивая интеллектуальные способности. Фактор общего интеллекта, таким образом, отражает некое основное качество, необходимое для выполнения всех видов задач. На протяжении последующего времени результаты этих экспериментов многократно воспроизводились, однако появилось и множество альтернативных мнений.

Природа этого общего фактора всегда была предметом споров. Некоторые считали фактор g эпифеноменом, порождённым связью общих когнитивных задач с лингвистическими навыками и культурными знаниями. Другие исследователи объясняли фактор g тем, что тесты зависят от вовлечения общих мозговых ресурсов, представляемых либо просто как структуры мозга, либо как некие когнитивные модули. Дженсен полагает, что фактор g отражает скорость и эффективность нейрональной переработки информации. Наконец, Пломин (1999 г.) отстаивает положение, согласно которому именно этот общий фактор отражает врождённые способности, связанные с генетически обусловленными задатками. Иными словами, имеется некий набор генов, определяющий свойства общего фактора g. Эти трактовки не исключают друг друга. Так, очевидно, что точки зрения Дженсена и Пломина могут быть приняты обе, если представить себе, что генетически обусловленные задатки касаются как раз скорости и эффективности работы нейрональных сетей.

Вопрос о том, насколько общий фактор g может быть предопределён генетическими причинами, был предметом многих исследований, проведённых с использованием всех методов генетики, в том числе и близнецового. Все они приводят к тому, что генетические факторы играют большую роль в определении g. Оценки коэффициента наследуемости для общего фактора g варьируются от 40 до 80%; в целом можно считать, что, как минимум половина наблюдаемой изменчивости g связана с генотипической изменчивостью. С возрастом коэффициент наследуемости растёт (до 60% у взрослых).

Другая точка зрения на интеллект - интеллект к ак сумма отдельных способностей

Часть исследователей вообще утверждали, что генеральный фактор не выявляется, а имеется широкий спектр узких способностей, не коррелирующих друг с другом. Коэффициент интеллекта тем самым представляет собой некую сумму отдельных способностей. Выделялось до 120 таких специфичных способностей.

Современная концепция иерархии интеллектуальных способностей в какой-то мере объединяет эти противоречивые точки зрения. С одной стороны несомненно наличие общего фактора (g), который составляет, таким образом, некоторое ядро интеллектуальных способностей (первый уровень). Экспериментально это подтверждается значительной корреляцией в успешности решения тестов, позволяющих оценить различные ментальные способности. Считается, что общий фактор обусловливает около 50% наблюдающейся в популяции изменчивости по способностям к решению широкого набора различных тестов.

Часть изменчивости можно отнести на счёт нескольких менее широких «групповых» факторов интеллекта, из которых наиболее часто выделяются факторы памяти, пространственных способностей, скорости обработки информации, а также вербальный (второй уровень). Способности, попадающие в разные группы, могут обнаруживать меньшую взаимосвязь. В качестве примера можно привести особенности интеллекта в некоторых случаях умственной отсталости, связанной с хромосомными мутациями. У больных синдромом Шерешевского-Тернера вербальные способности практически не нарушены (нормальный уровень развития), тогда как пространственные существенно снижены. Совершенно иная картина наблюдается в случае синдрома Клайнфельтера, при котором снижение коэффициента интеллекта обусловлено серьёзными нарушениями вербальных способностей, а пространственные остаются в норме.

Наконец, часть наблюдаемой изменчивости не связана с общим фактором или с несколькими групповыми факторами и определяется очень специфичными ментальными способностями (третий уровень). Таким образом, мы получаем трёхуровневую модель, которая хорошо описывает существующие корреляции в выполнении различных тестов и наблюдаемую изменчивость (дисперсию) способностей.

С возрастом коэффициент интеллекта изменяется незначительно, обнаруживая высокую стабильность на протяжении многих десятков лет. Отдельные способности могут изменятся в разной степени, некоторые демонстрируют определённый рост (словарные, общие знания, определённые навыки), другие постепенно снижаются по мере старения, например, способность к абстрактным рассуждениям, память, скорость обработки информации. Последний фактор особенно важен, поскольку имеются данные, показывающие, что наблюдаемые изменения когнитивных процессов при старении в основном связаны со снижением скорости переработки информации. (2).

Наследуемость IQ

При исследовании монозиготных близнецов, выросших порознь, обнаружена высокая степень корреляции коэффициента интеллекта (в пределах 0,64-0,78). Оценка наследуемости (в широком смысле, т.е. с учётом всех генетических факторов) в этих работах составила 0,75.

Согласно некоторым другим подсчётам наследуемость этого коэффициента оценивается в 0,50, вклад общей среды 0,20-0,30, а остальная часть фенотипической дисперсии приходится на индивидуальные средовые воздействия и ошибку измерения.

Прямая оценка влияния общей среды возможна в исследованиях приёмных детей. Если вычислить корреляцию по коэффициенту интеллекта между родными и неродными детьми, воспитанными в одной семье, то она составляет только 0,04 (данные четырёх исследований, полученные уже на взрослых). Другие данные показывают, что в раннем детстве имеется небольшая корреляция между IQ генетически неродных детей, воспитывающихся в одной семье. Причём с возрастом, несмотря на увеличение длительности совместного воспитания, происходит падение корреляции практически до нуля. Эти данные показывают отсутствие влияния общей семейной среды на наблюдаемую изменчивость умственных способностей.

Корреляция IQ между детьми и их биологическими родителями во всех исследованиях была существенно выше, чем между приёмными детьми и усыновителями (0,35-0,40 против 0,15). Очень интересные данные были получены в лонгитюдных исследованиях. Если в раннем детстве фиксируется небольшая корреляция IQ приёмных детей и усыновителей, то начиная с 7 лет усиливается сходство между уровнем интеллекта приёмных детей и их биологических родителей, а корреляция «приёмные дети-усыновители» падает. При низких значениях коэффициента интеллекта у биологических родителей усиление сходства «приёмные дети-биологические родители» достигается за счёт снижения IQ у детей. Кроме того, было отмечено, что на это снижение не влиял социально-экономический статус усыновителей.

Самое репрезентативное исследование IQ было основано на данных призыва на военную службу в Дании (1984 г.). Все мужчины, независимо от годности к службе, выполняли тест по оценке интеллекта. Корреляция результатов тестирования среди родных детей, выросших вместе, составила 0,52, у родных детей, выросших в разных семьях, - 0,47, для сводных братьев и сестёр, выросших порознь, этот показатель не превышал 0,22, а для приёмных детей, выросших в одной семье, - 0,02. Таким образом, результаты указывают на высокую наследуемость и на незначительное влияние общей среды.

Изменение наследуемости коэф фициента интеллекта с возрастом

В лонгитюдных близнецовых исследованиях интеллекта было показано, что в возрасте 3-6 месяцев практически отсутствует разница в корреляции умственных способностей между моно- и дизиготными близнецами, т.е. наследуемость равна нулю. Затем разница проявляется и постепенно увеличивается за счёт того, что сходство монозиготных близнецов всё время растёт, а сходство дизиготных всё время уменьшается. В возрасте 15 лет корреляция по коэффициенту интеллекта для монозиготных близнецов составляла 0,86, а для дизиготных - 0,54. У взрослых значения корреляции IQ для монозиготных близнецов составляли 0,83, а для дизиготных - 0,39. В течение практически всего взрослого периода жизни наследуемость оставалась прежней, не превышая в среднем 0,81.

Увеличение наследуемости по мере взросления противоречит предположениям о том, что с возрастом всё большую роль для возникновения индивидуальных различий играет воздействие среды.

По мере взросления и перехода от детства к взрослому состоянию, наблюдается постепенное снижение практически до нуля вклада общей (разделённой) среды в наблюдаемую изменчивость IQ . Вклад индивидуальной среды остаётся сравнительно значимым для всех возрастов.

Если оценивать специальные умственные способности, то в целом получаются меньшие значения наследуемости, чем в случае общего IQ . Из массы данных по отдельным компонентам тестов, определяющих умственные способности, стоит упомянуть любопытный факт, касающийся вербальных способностей. Значения коэффициента наследуемости вербальных способностей превосходят показатели для невербального интеллекта. Это касается самых разных исследований вне зависимости от конкретных значений наследуемости, которые могут достаточно сильно варьировать. Получается, что невербальные способности более чувствительны к влияниям среды.

В то же время в ходе близнецовых исследований выяснилось, что для памяти на невербальные стимулы характерны очень высокие показатели наследуемости. (13). Например, были получены значения коэффициента наследуемости для памяти на невербальные зрительные стимулы (0,93), на тактильные (0,69) и на слуховые (0,86). Напротив, для словесных стимулов, как зрительных, так и слуховых, не наблюдалось значительных различий в показателях моно- и дизиготных близнецов. Таким образом, значения коэффициента наследуемости для памяти на словесные стимулы оказались намного ниже (зрительные стимулы - 0,38; слуховые стимулы - 0,37). (1).

3. Генетика зависимостей человека

3.1 Алкоголизм

В отношении алкоголизма встречается довольно большое разнообразие мнений. В одних работах сообщается о высоких коэффициентах наследуемости, в других же утверждается обратное. При анализе следует обращать внимание на само определение алкоголизма. Может быть широкое определение, когда отмечаются все случаи чрезмерного пьянства или когда против злоупотребления алкоголем активно возражают другие члены семьи. Возможно и более широкое определение, при котором во внимание принимаются только случаи с возникновением зависимости и синдрома абстиненции.

Другой источник разногласий - явное различие между полами. Женский и мужской алкоголизм отличаются как причинами возникновения, так и проявлениями.

В своё время было обнаружено отсутствие различий между моно- и дизиготными близнецами женского пола в конкордантности по злоупотреблению алкоголем и наркотиками. Значения конкордантности составляли 0,34 и 0,31 соответственно. У мужчин такие различия оказались достоверными только для случаев раннего начала злоупотребления алкоголем (до 20-ти лет). Был сделан вывод о высокой наследуемости только ранних форм алкоголизма у мужчин. Это подтверждается тем, что в случаях, когда оба монозиготных близнеца мужского пола становились алкоголиками, одновременно отмечался высокий уровень заболеваемости среди их родственников. Для женщин такая закономерность не наблюдалась.

Другая работа, выполненная на большем количестве женских близнецовых пар, напротив, показала, что конкордантность по самым разным проявлениям алкоголизма для монозиготных пар вдвое выше, чем для дизиготных. Значение наследуемости для женского алкоголизма оказалось на уровне 60% при широком определении алкоголизма как пьянства, связанного с возникновением жизненных проблем. При этом воздействие общей среды (общее воспитание, посещение той же школы, наличие общих соседей и пр.) было практически нулевым. Таким образом, все средовые влияния, связанные с возникновением алкоголизма, можно отнести на счёт воздействий, специфических для данного индивидуума. Интересно, что алкоголизм родителей не только не повышал риска алкоголизма у дочерей, но даже слегка его понижал. В этом случае можно думать, отрицательный пример родителей играет роль удерживающего фактора, тогда как наследственность влияет в противоположном направлении.

Исследования на приёмных сыновьях всё-таки чаще показывают значительную корреляцию с биологическими родителями в развитии алкоголизма. Так, независимо от наличия алкоголизма у воспитателей, частота алкоголизма у приёмных детей, чьи биологические родители больны алкоголизмом, остаётся постоянной. Значения для этих двух групп составляли 12,5 и 13,6%. Таким образом, получается, что в данном исследовании семейные влияния не играли значимой роли! Если алкоголизмом болен один из биологических родителей, то заболеваемость среди приёмных детей варьируется в пределах 18-20% для сыновей и 2-10% для дочерей. Оценки заболеваемости в общей популяции - 3-5% для мужчин, 0,1-1% для женщин (крайние оценки - до 10% у мужчин и 3-5% для женщин).

Похожие данные приводятся в датском исследовании, в котором были проанализированы результаты 55 усыновлений мальчиков, один из биологических родителей которых был алкоголиком. К 30-летнему возрасту у 18% усыновлённых развился алкоголизм в тяжёлой форме (против 5% в контрольной группе).

Близнецовые исследования демонстрируют значительный разброс, но всё же имеется определённая закономерность. Хотя вариабельность потребления алкоголя в социально приемлемых границах генетически слабо обусловлена, но по мере перехода от умеренного потребления к чрезмерному, наблюдается возрастание отличий конкордантности моно- и дизиготных близнецов. Так, для наиболее тяжёлых проявлений алкоголизма конкордантность монозиготных составила 71%, а дизиготных - только 32%.

Подростки с высоким риском развития алкоголизма (наличие в семье алкоголиков) раньше начинают употреблять алкоголь, у них в более раннем возрасте начинаются проблемы со злоупотреблением наркотиками. Если у них есть родственники первой и второй степени, страдающие алкоголизмом, то вероятность раннего начала употребления алкоголя повышается, так же как и трудности с развитием навыков чтения. У этих же подростков (с высоким риском развития алкоголизма) отмечается наличие определённых нейробиологических маркеров, в частности, уменьшенная амплитуда компонента P 300 в вызванных потенциалах мозга. Об этом же говорит высокий балл, набранный по шкале экстраверсии.

Ещё одно обстоятельство, влияющее на злоупотребление алкоголем, - это наличие взаимодействия «генотип-среда» (G E ). Среда по-разному влияет на заболеваемость различными типами алкоголизма.

Выделяют алкоголизм типа I, который отличается относительно умеренным злоупотреблением, пассивно-зависимыми чертами личности и минимальной связью с преступностью, алкоголизм типа II, который характеризуется ранним началом, склонностью к совершению насилия и связью с преступностью. На основании данных заболеваемости близких родственников были подобраны две группы генетического риска по этим формам алкоголизма и одновременно изучены условия, в которых воспитывались обследуемые. При этом было обнаружено, что в случае группы генетического риска алкоголизма I типа заболеваемость алкоголизмом повышена, т.е. демонстрируется генетически обусловленная причина заболевания, но в то же время на заболеваемость влияет среда, в которой выросли обследуемые. При неблагоприятной среде, провоцирующей злоупотребление алкоголем, заболеваемость значительно выше, чем при воспитании в благоприятной среде. Таким образом, воздействия неблагоприятной среды значительно усиливают генетически обусловленные тенденции.

В случае группы генетического риска алкоголизма типа II заболеваемость также повышена, но она практически не увеличивается в условиях воздействия неблагоприятной среды. Таким образом, мы имеем случай, когда одинаковое воздействие среды (воспитание в неблагоприятных условиях, провоцирующих возникновение алкоголизма) по-разному влияет на разные генотипы. Средовое воздействие увеличивает заболеваемость у одних генотипов (с генетическим риском алкоголизма типа I) и не влияет на другие (с генетическим риском типа II).

Другой пример, указывающий наличие взаимодействия «генотип-среда» (G E ), приводится в работе, где было замечено, наследуемость потребления алкоголя у замужних женщин значительно ниже, чем у незамужних (это характерно для всех возрастов). Аналогичным образом влияет на женщин и религиозное воспитание (более низкие значения наследуемости для злоупотребления алкоголем). В этих примерах средовые влияния не дают проявиться генетически обусловленным факторам риска.

В ходе экспериментов на животных по выявлению причин, связанных с предпочтением алкоголя, что возникновение зависимости определяется активностью ферментов, метаболизирующих алкоголь. Похоже, что подобная закономерность характерна и для человека. Этиловый спирт превращается в уксусный альдегид с помощью фермента алкогольдегидрогеназы.

Следующий этап - превращение уксусного альдегида в уксусную кислоту, которое осуществляется помощью альдегиддегидрогеназы. Все неприятные ощущения, возникающие после приёма алкоголя, связаны не с самим алкоголем, а с повышенным уровнем альдегида в крови. Это приступы тахикардии (учащённого сердцебиения), приливы крови (гиперемия), потливость, подъём кровяного давления, позывы к мочеиспусканию и другие вегетативные сдвиги. Пониженная активность фермента альдегиддегидрогеназы приводит к очень неприятным ощущения, на чём, кстати, основан один из методов лечения алкоголизма с помощью дисульфирама (антабуса), угнетающего активность этого фермента.

Существует аллель (вариант гена) ALDH 2*2, кодирующий структуру альдегиддегидрогеназы со сниженной активностью. Этот атипичный фермент замедляет превращение уксусного альдегида в уксусную кислоту. В результате у людей с этим вариантом альдегиддегидрогеназы употребление алкоголя сопровождается неприятными ощущениями. В различных европейских популяциях доля людей с таким вариантом фермента колеблется от 5 до 20%, а вот в Азии он встречается гораздо чаще (у 90% японцев). Наличие такого гена в гомозиготном состоянии (примерно у 50% населения Восточной Азии) практически несовместимо с алкоголизмом. В Японии лица, гомозиготные по этому аллелю (две копии ALDH 2*2), потребляют в месяц в 10 раз меньше алкоголя, чем лица, в генотипе которых нет ALDH 2*2. В случае присутствия только одной копии ALDH 2*2 ежемесячное потребление алкоголя в три раза ниже, чем при отсутствии ALDH 2*2 в генотипе.

Чтобы разделить влияние наследственности и культурных традиций в развитии алкоголизма, в одной из работ было проведено сравнение особенностей потребления алкоголя у белых американцев и американцев азиатского происхождения (предки которых давно иммигрировали в США). Исследование было выполнено на студентах колледжей. Оказалось, что не употребляют алкоголя вообще 20% студентов азиатского происхождения и только 3% белых. Употребляют реже одного раза в месяц - 49 и 16% соответственно. Среди лиц, употребляющих алкоголь почти каждый день, было 35% белых и только 19% студентов азиатского происхождения. Эти данные показывают, что культурные влияния, связанные с «западными» культурными ценностями и стилем жизни, не определяют особенностей потребление алкоголя. В то же время особенности физиологии сказываются весьма заметным образом. (14).

3.2 Курение

Имеется умеренное генетическое влияние на пристрастие к табакокурению. Исследование, проведённое в США на 4775 парах показало, что сильная и лёгкая степень табакокурения определяются разными генетическими влияниями. Один из самых сильных генетических эффектов проявляется у малокурящих, и совсем иная врождённая склонность связана с тяжёлой зависимостью от табака. (12).

3.3 Наркомания

Из-за широкой доступности наркотических средств в настоящее время наркомания стала серьезной социальной проблемой.

Пристрастие к разным наркотикам имеет неодинаковую генетическую компоненту. Наследуемость подверженности героиновой наркомании составляет 50%, к психоделическим средствам 26%. Большое влияние (53%) на прием психоделичсеких средств оказывает внесемейное окружение. Показано, что одним из важных факторов предрасположенности к наркомании является такая психологическая черта человека, как поиск новизны. (15).

Заключение

Перейдя к описанию количественных признаков мы нашли, что все они контролируются генотипом и средой (возможно за исключением признаков ассиметрии мозга). Хотя у экспериментальных животных выявить генетическую компоненту поведения довольно просто, сделать это в отношении человека значительно труднее, из-за сложных взаимодействий генотипа и внешних условий. Однако у доступных для изучения поведенческих признаков имеется генетический компонент, пусть даже трудно выявляемый. Исходя из этого, мы можем говорить о том, что гены в некоторой степени контролируют поведение личности, но огромное значение имеет также влияние среды.

Поэтому в настоящее время генетика поведения приобретает особенно важное значение для понимания биологии, особенно на популяционном и эволюционном уровнях.

С писок литературы

1. Александров А.А., Психогенетика: Учебное пособие. - Спб.: Питер, 2007.;

2. Анохин А.П., Генетика, мозг и психика человека: тенденции и перпективы исследований. - М., 1988.

3. Антала Ф., Кайгер Дж., Современная генетика, Москва, Мир, 199, Т.1. с. 63-80;

4. Атраментова Л.А. Введение в психогенетику: Учебное пособие / Л.А. Атраментова, О.В. Филипцова. - М.: Флинта, Московский психолого-социальный институт, 2004.

5. Биологический энциклопедический словарь, М., 1989;

6. Генетика человека: В 3 т. / Ф. Фогель, А. Мотульски,; Пер. с англ. под ред. Ю.П. Алтухова, В.М. Гиндилиса. Т. 3. - М.: Мир, 1990.

7. Гэйто Дж., Молекулярная психобиология, пер. с англ., М., 1969;

8. Кибернштерн Ф., Гены и генетика, Москва, Параграф, 1995;

9. Корочкин Л.Г. Гены и поведение // Соросовский образовательный журнал. - 1997. - №1. - С. 15-22;

10. Крушинский Л.В., Генетика и феногенетика поведения животных, в кн.: Актуальные вопросы современной генетики, М., 1966;

11. Лобашев М.Е., Генетика, Ленинград, Издательство Ленинградского университета, 1967, с. 680-714;

12. Малых С.Б., Егорова М.С., Мешкова Т.А., Основы психогенетики. - М., 1988.

13. Михеев В.Ф., Наследственная обусловленность некоторых индивидуальных особенностей памяти человека // Проблемы генетической психофизиологии / Под. ред. Б.Ф. Ломова, И.В. Равич-Щербо. - М., 1978.

14. Москаленко В.Д., Полтавец В.И. Генетические основы алкогользависимого поведения человека // Успехи современной генетики. - Вып. 17. - М.: Наука, 1991.

15. Равич-Щербо И.В., Марютина Т.М., Григоренко Е.Л., Психогенетика Аспект-пресс, 1999 г.;

16. Эрмон Л., Парсонс П., Генетика поведения и эволюция: - М.: Мир, 1984.

17. Юдин К.П., Генетика и жизнь, 1979 г., М.

Размещено на Allbest.ru

Подобные документы

    Первые эксперименты по генетике поведения: искусственная селекция линий "dull" и "bright" лабораторных крыс. Влияние генетической и средовой компонент на поведение. Анализ локусов и генов влияющих на признаки поведения. Понятие доместикации животных.

    презентация , добавлен 14.04.2014

    Развитие генетики поведения как науки. Лошадь и человек. Материнский инстинкт у животных. Иерархия у лошадей. Активно-оборонительная реакция. Признаки, создающие индивидуальность. Фазы в ритуале знакомства у животных. Условные и безусловные рефлексы.

    курсовая работа , добавлен 14.10.2016

    Явление наследственности. Современная медицинская генетика. Генетика человека на этапе становления и ее проблемы. Ген цветовой слепоты (дальтонизм). Методы генетической инженерии и биотехнологии по конструированию микроорганизмов с заданными свойствами.

    реферат , добавлен 31.10.2008

    Место генетики среди биологических наук. Генетика и этика – проблемы генной инженерии и клонирования высших организмов и человека. Наследственная система или геном клетки. Совокупность наследственных структур. Открытие и расшифровка двойной спирали ДНК.

    реферат , добавлен 31.10.2008

    Понятие и направления исследования генетики наркомании, интерес к данной проблеме на современном этапе. Нейрохимические системы мозга, участвующие в опосредовании эффектов алкоголя, а также опиоидов. Мутации, связанные с применением алкоголя и опиума.

    контрольная работа , добавлен 03.12.2013

    Развитие эволюционных учений. Исследования Менделя. Теория эволюции Дарвина. Эволюционные воззрения Ламарка. Генетический дрейф. Современная генетика. Геном человека. Аксиомы биологии. Фенотип и программа его построения. Синтез генитики и эволюции.

    реферат , добавлен 09.06.2008

    Особенности и методы изучения генетики человека. Наследование индивидуальных особенностей человека. Аутосомно-доминантный тип наследования. Признаки, сцепленные с полом. Условные обозначения, принятые для составления родословных. Хромосомные болезни.

    презентация , добавлен 21.02.2013

    Сущность проекта "Геном человека". Генетика и проблемы рака. Влияние генов на агрессивность, преступность и интеллект. Устойчивость к действию алкоголя, никотина, наркотиков. Определение роли наследственности и среды в развитии признаков близнецов.

    научная работа , добавлен 15.03.2011

    Генетика и эволюция. Факторы эволюции. Естественный отбор. Теория пангенезиса Дарвина. Классические законы Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования признаков. Современная генетика.

    реферат , добавлен 21.06.2007

    Генетика и эволюция, классические законы Г. Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования (наследования) признаков. Признание открытий Менделя, значение работ Менделя для развития генетики.

Генетика поведения, область науки о поведении, основывающаяся на законах генетики и изучающая, в какой степени и каким образом различия в поведении определяются наследственными факторами. Основные методы исследования Г. п. на экспериментальных животных – селекция в сочетании с инбридингом (близкородственное скрещивание), при помощи которых изучаются механизмы наследования форм поведения, на человеке – статистический и генеалогический анализ в сочетании с близнецовым и цитогенетическим методами. (5).

Зависимость поведения от наследственных факторов – генное управление и контроль поведения – исследуется на различных уровнях организации живого: в биоценозах, популяциях, сообществах, на уровне организма, а также на физиологическом (орган, ткань, клетка) и молекулярном уровнях, Исследования генетики поведения имеют существенное значение для учения об индивидуальных различиях высшей нервной деятельности и выявления относительной роли врожденных и индивидуально приобретённых особенностей поведения, для объяснения роли генетически обусловленных особенностей поведения животных в популяции (для общественных животных – в стаде, стае и т.п.), а также для создания экспериментальных моделей нервных болезней.

Генетика поведения – это сравнительно молодая область знаний, оформившаяся около полувека тому назад на пересечении таких дисциплин, как собственно генетика, биология развития и комплекс наук о поведении, включающий психологию, этологию и экологическую физиологию. Задачей этого нового направления стало изучение онтогенеза обширного класса биологических функций организма, именуемых «поведением» и обеспечивающих по существу двустороннюю связь между индивидуумом и окружающей его экологической и социальной средой. Глобальность этой задачи уже сама по себе явилась причиной того, что в сферу интересов генетики поведения вскоре оказались втянутыми столь далёкие друг от друга разделы науки и практики, как эндокринология и психиатрия, биохимия и педагогика, нейрофизиология и лингвистика, антропология и селекция сельскохозяйственных животных. Кроме того, коль скоро уже давно стало очевидным, что поведение является одним из важнейших факторов эволюционного процесса, генетика поведения в последние годы всё теснее увязывается с эволюционным учением, становясь неотъемлемой частью современной эволюционной биологии.

Генетический анализ поведения животных

Генетические исследования на человеке имеют целый ряд вполне понятных ограничений. В связи с этим представляют интерес исследования генетических основ поведения у животных. Здесь можно применять методы селекции, получение инбредных линий, современные методы генной инженерии, избирательного выключения определённых генов, вызывать мутации и т.д. Инбредные линии, получаемые при длительном близкородственном скрещивании (не менее 20 поколений), представляют собой идентичных по генотипу животных, поэтому все отличия, которые можно наблюдать среди животных одной линии, связаны с воздействием среды.

Генетика поведения насекомых

Приведём пример генетического анализа поведения, который довольно часто рассматривается в учебной литературе. Речь пойдёт о пчёлах и о заболевании под названием «американская личиночная гниль». Существует линия пчёл, устойчивых к этой болезни, потому что в случае заболевания личинки пчелы немедленно распечатывают ячейку, в которой она находится, и удаляют её из улья. Таким образом предупреждается распространение болезни, причём устойчивость к ней связана с характерным поведением! При скрещивании устойчивых к болезни пчёл с неустойчивыми получают гибриды первого поколения (F1), которые не чистят ульи. Отсюда ясно, что аллель или аллели, обусловливающие этот тип поведения, рецессивные. Гибриды первого поколения F1 снова скрещивают с устойчивыми пчёлами (так называемое анализирующее скрещивание – с рецессивными гомозиготными особями). В результате у потомства наблюдается четыре варианта фенотипов в соотношении 1:1:1:1. Вот эти варианты:

– пчёлы открывают ячейки, удаляют поражённые личинки;

– открывают ячейки, но не удаляют поражённые личинки;

– не открывают ячейки, но удаляют поражённые личинки, если ячейку откроет экспериментатор;

– не открывают ячейки, не удаляют поражённые личинки.

Таким образом, очевидно, что этот довольно сложный поведенческий акт контролируется генами всего в двух локусах. Один аллельный ген определяет действия по вскрытию ячейки, другой связан с удалением поражённой личинки.

В данном случае впечатляет тот факт, что довольно сложные действия могут контролироваться всего одним геном.

У плодовых мушек – дрозофил, которые долгие годы являлись излюбленным объектом генетиков – выявлено огромное количество мутаций, затрагивающих поведение. Так, мутация dunce приводит к нарушению способности к выработке условных рефлексов. Мутаций, так или иначе нарушающих обучение, известно несколько. Важно, что все эти дефекты связаны с нарушением метаболизма так называемых вторичных мессенджеров (прежде всего циклической АМФ), играющих большую роль во внутриклеточной сигнализации и синаптической пластичности.

Есть мутации, приводящие к высокой и низкой половой активности, к избеганию определённых запахов, меняющие двигательную активность, вплоть до того, что есть мутация, определяющая, как дрозофила складывает крылья, – правое поверх левого или наоборот.

Иногда встречаются примеры весьма специфичных отклонений в поведении. Так, при мутации fru (от fruitless – бесплодный) наблюдаются следующие нарушения полового поведения у самцов: они не ухаживают за самками, а ухаживают только за самцами, гомозиготными по данной мутации, и стимулируют нормальных самцов ухаживать за собой. Получилось нечто вроде модели формирования гомосексуального поведения.

Вообще складывается впечатление, что большинство поведенческих актов у дрозофил генетически предопределено во всех деталях.

Исследования способности к обучению животных

Одним из самых важных свойств поведения животных является способность к обучению. Исследования на животных дают возможность провести селекционные эксперименты. Одним из первых на крысах такой эксперимент поставил Трайон. Он проводил селекцию по признаку обучаемости животных, которые должны были находить правильный путь к подкормке, помещённой в сложном 17-тупиковом лабиринте. Отбирались хорошо и плохо обучаемые животные, которые в дальнейшем скрещивались уже только между собой. Регулярная селекция дала очень быстрый результат – начиная с восьмого поколения показатели обучаемости у «умных» и у «глупых» крыс (число ошибочных пробежек в лабиринте) же не перекрывались. Селекция проводилась до 22-го поколения, в результате чего были получены две группы крыс – хорошо обучавшихся (bright ) и плохо – (dull ). При одинаковых условиях выращивания и тестирования различия между этими группами обусловлены только различиями в генотипе.

В дальнейшем было получено множество линий, особенно у мышей, различавшихся по способности к различным формам обучения. Подобные линии были отобраны по способности обучаться в Т-образном лабиринте, по обучению к активному и пассивному избеганию, плаванию в водном тесте Морриса. Иногда задача, которую выполняет животное, весьма сложна. Так, например, были получены линии мышей, хорошо и плохо обучавшиеся пищедобывательному двигательному условному рефлексу. Мыши получали подкрепление, когда они прыгали в ответ на звуковой или световой стимул на разные полочки. При этом можно отметить некоторые общин закономерности:

1) обычно имеет место большие разнообразие признака в исходной популяции;

2) хотя селекционный ответ может проявляться очень рано, и разница между линиями обнаруживается уже через 2–3 поколения, для появления стабильных достоверных отличий между линиями требуется гораздо больше поколений (около 10–20).

Высокий разброс исходных значений признака и постепенное развитие селекционного ответа являются свидетельством полигенной природы признака. Иными словами проявление данного признака в фенотипе зависит от сравнительно большого числа генов. Подобным же образом обстоит дело с большинством черт поведения млекопитающих.

Существует ещё одна проблема, связанная с опытами по селекции. Селекция проводится при тестировании какой-то определённой задачи. Естественно, возникает вопрос: насколько способность решать данную задачу коррелирует со способностью к другим видам обучения? Однозначного ответа на этот вопрос нет.

Например, когда стали более подробно изучать способность к обучению вообще на линиях крыс, полученных Трайоном (bright и dull ), то выяснилось, что хорошо обучавшиеся (bright ) быстрее обучаются пищедобывательному поведению, а крысы dull в свою очередь демонстрируют лучшие показатели в задачах на оборонительную реакцию. Таким образом, здесь проблема обучения может быть перенесена в плоскость мотивационных механизмов. Известно, что мотивация может исключительно сильно сказываться на результатах обучения.

Получается, что крысы линии bright сильнее мотивируются голодом, тогда как крысы dull сильнее мотивируются страхом в угрожающих ситуациях. Точно также, как мотивация, на успешность обучения могут влиять сенсорные способности, уровень двигательной активности, эмоциональность животных. Соответственно гены, влияющие на активность данных качеств, могут оказывать воздействие на обучение.

Однако некоторые линии демонстрируют различия и в более общих способностях к обучению. Так, мыши линии DBA/2J обучаются лучше, чем животные линии CBA , что подтверждается в целом ряде тестов: при пищевом подкреплении в лабиринте, в челночной камере при выработке условно-рефлекторной реакции активного избегания, при оперантном обучении. Значит, есть некие генетически определяемые свойства нервной системы, которые влияют на способность реализации различных типов обучения. Список мутаций, нарушающих обучение и память у мышей, быстро расширяется.

Таблица 1. Гены мыши, локализованные на определённых хромосомах и играющие важную роль в обучении и памяти

У крыс Трайона были отмечены и различия в характеристиках памяти, что, безусловно, сказывалось на результатах тестирования. Так, оказалось, что у крыс линии bright быстрее происходит консолидация – упрочение следов памяти, переход их в устойчивую форму. Можно прибегнуть к воздействиям, нарушающим краткосрочную память, например, применить особую форму электрошока, вызывающую амнезию. Оказалось, что уже спустя 75 с после обучения электрошоковую амнезию не удаётся вызвать у крыс линии bright , тогда как на крыс линии dull электрошоковая процедура по прежнему оказывает воздействие.

Разная скорость консолидации, по-видимому определяет различия в успешности формирования навыков ориентации в лабиринте. Что произойдёт, если крысам линии dull будет предоставлено время, достаточное для запоминания? Исследования показали, что, когда интервалы между попытками составляли 30 с, крысы линии bright обучались намного быстрее крыс линии dull , как это и должно было быть. Но когда интервал увеличивали до 5 минут, разница в обучении между линиями существенно уменьшалась. Если же крысам вообще давали только одну попытку в день, показатели обучаемости обеих линий становились одинаковыми. Скорость приобретения навыка и скорость консолидации может определяться разными механизмами!

Важный вывод: подбор условий обучения может уменьшить или даже свести на нет разницу в генетически обусловленных способностях.

В настоящее время получен целый ряд линий мышей, резко отличающихся по скорости консолидации памяти. Имеется линия (C3H/He ), у которой обучение возможно только пои непрерывной тренировке. Есть линия (DBA/2J ), у которой обучение, наоборот, идёт значительно успешнее при увеличении интервалов между отдельными сессиями тренировки. И наконец, введена линия (BALB/c), для которой характер интервалов между экспериментальными сессиями не сказывается на результатах обучения. Данный подход создаёт, таким образом, уникальные возможности для изучения механизмов памяти.

Ещё одно направление исследований на животных – это выяснение влияния окружающей среды на формирование свойств поведения. Вновь вернёмся к крысам линий bright и dull . Можно поставить эксперимент по выращиванию этих крыс в разных условиях. Одна группа (контрольная) выращивается в обычных условиях вивария. Для другой создаётся «обогащённая» среда – клетки больших размеров с раскрашенными стенками, наполненные различными предметами, зеркалами, мечами, трапами, лестницами, туннелями. Наконец, третьей группе предоставляется «обеднённая» среда, где сильно ограничен приток сенсорных раздражителей и ограничены возможности поисковой и исследовательской активности. На графике 1 обогащённая среда обозначена как «хорошие» условия, обеднённая среда – как «плохие». Нормальные условия соответствуют контрольной группе.

График 1. Результаты обучения в лабиринте линий «умных» и «глупых» крыс, выросших в ухудшенных, обычных и улучшенных условиях. (15).

Результаты контрольной группы соответствуют ожиданию – крысы линии bright при обучении в лабиринте совершают намного меньше ошибок по сравнения с крысами линии dull . Однако для крыс, воспитанных в условиях обогащённой среды, эта разница практически сходит на нет, причём в основном за счёт резкого уменьшения ошибок у «глупой» линии крыс. В случае воспитания в условиях обеднённой среды разница между двумя линиями также исчезает, причём на этот раз в основном за счёт резкого увеличения числа ошибок у «умной» линии крыс.

Здесь мы касаемся очень важной проблемы – существования мощных механизмов пластичности нервной системы, которые способны компенсировать весьма существенные дефекты. Многочисленные исследования по выращиванию крыс в обогащённой среде показали, что сравнительно быстро – за 25–30 дней возникают весьма существенные морфологические отличия на уровне коры больших полушарий. У животных, содержащихся в обогащённой среде, отмечается более толстая кора, большие размеры нейронов, на 10–20% увеличивается число дендритных отростков, приходящихся на один нейрон. Всё это приводит к увеличению на 20% числа синапсов, приходящихся на один нейрон. В конечном счёте речь идёт о миллиардах новых синапсов, что резко увеличивает возможности нервной системы. Особенно важен тот факт, что данный потенциал пластичности сохраняется практически всё время. Опыты на взрослых животных привели к аналогичным результатам. Сходным образом обогащённая среда оказывает влияние и на развитие ребёнка.

Видео: О влиянии генетики на поведение и характер.


Хромосома

Обучение и память

ГЕНЕТИКА ПОВЕДЕНИЯ — раздел генетики, посвященный исследованию закономерностей наследственной обусловленности функциональных проявлений деятельности системы нервной. Основной задачей ставит описание механизмов реализации генов в поведенческих признаках и выделение влияния среды на этот процесс.

Наряду с прочими исследовательскими методами здесь применяется генетико-селекционный метод, благодаря чему свойства системы нервной и особенности поведения можно целенаправленно изменять.

Каждый наследуемый признак поведения обычно имеет сложный полигенный характер. Для животных с более низких ступеней эволюционной лестницы (насекомые, рыбы, птицы) характерна малая изменчивость врожденных, инстинктивных действий, обусловленных генотипом. По мере эволюционного развития все большее значение обретает процесс образования рефлексов условных, и генотип все менее обусловливает фенотипическую изменчивость.

Информация, важная для адаптации, не только приобретается в собственном опыте, но может передаваться от родителей к потомкам путем непосредственных контактов, за счет, подражательных рефлексов условных.

Данные, полученные в генетике поведения, имеют особенное значение для изучения нервной деятельности человека при патологиях: нередко отсталость умственная и заболевания психические обусловлены наследственно и связаны с генетическими нарушениями.

ГЕНЕТИКА ПОВЕДЕНИЯ (англ.

behavioral genetics)- раздел генетики, изучающий закономерности наследственной детерминации структурных и функциональных особенностей н. с. Г. п. позволяет понять характер наследственной передачи поведенческих особенностей; раскрыть развертывающуюся в онтогенезе цепь процессов, ведущих от генов к признакам; вычленить влияние среды на формирование поведения в пределах потенциальных возможностей, заданных генотипом.

С помощью генетико-селекционного метода свойства н. с.и особенности поведения м.

б. направленно изменены. Наследование различий по признакам поведения носит, как правило, сложный полигенный характер.

Экспериментально показано, что видовой стереотип поведения животных имеет весьма жесткую наследственную обусловленность.

Малая изменчивость врожденных, инстинктивных актов особенно характерна для животных, стоящих на более низких ступенях эволюционной лестницы, - насекомых, рыб, птиц, однако даже у насекомых поведение м.

б. модифицировано за счет выработки временных связей.При этом поведение не есть простой результат эволюционных изменений; оно выполняет активную роль в эволюции, т. к. через поведенческие адаптации проявляется действие отбора в популяции животных и обеспечивается регулирование ее структуры и численности.

Наследственная информация от родителей к потомкам может передаваться на основе непосредственных контактов, за счет выработки подражательных условных рефлексов и иных способов восприятия и преобразования информации (т.

н. сигнальная наследственность).

Особое значение для Г. п. имеет изучение нервной деятельности человека - в норме и патологии. Часто умственная отсталость и психические заболевания имеют наследственную этиологию, связанную с генетическими нарушениями обмена веществ, изменением в числе и структуре хромосом и проч.

нарушениями генетического аппарата.

генетика поведения

См. Психогенетика.(И. В. Равич-Щербо.)

Следующие материалы:

Предыдущие материалы:

Download SocComments v1.3

Лекция 3. 1. Врожденные формы поведения

1. Врожденные формы поведения

2. Приобретенные формы поведения

Приспособление животных, в процессах эволюции, к относительно постоянных явлений и тех, что периодически повторяются во внешней среде, выработал в них генетически закрепленные, врожденные формы поведения.

Вместе с тем, приспособление к непостоянным, нестабильных условий окружающей среды формирует у каждого поколения животных динамические, что производятся на протяжении онтогенеза приобретенные, формы поведения.

Врожденные формы поведения

На разных этапах эволюции можно выделить следующие врожденные адаптивные реакции: таксисы, рефлексы и инстинкты.

Таксисы — простейшая форма поведения, которое определяет взаимодействие организма с внешней средой в одноклеточных и многоклеточных.

Таксисом в этологии называют ориентированный (направленный) движение, которое соединяется с каким-то комплексом фиксированных действий.

Например, когда серый гусь катит выкаченное яйцо к гнезду, он выполняет боковые движения, которые должны удерживать яйцо под клювом. Эти направленные движения представляют собой таксисы. На следующих этапах эволюции роль таксисов резко снижается и они заменяют другими, более совершенными механизмами адаптации.

Рефлексы — это также вид адаптивного поведения. В данном случае рассматривается врожденная безусловная рефлекторная реакция, которая служит одним из главных видов адаптации в животном миру.

Например, цыпленок, который только что вылупилось из яйца, начинает клевать, теленок — сосать.

Инстинкт (от лат. “instinctus” — побуждение) представляет собой совокупность урожденных стереотипных актов поведения, характерных для особей данного вида в определенных условиях.

Примерами могут служить пищевой, имитационный, стадный, игровой (у молодых животных), миграционный.

Каждый такой инстинкт может включать и более простые инстинктивные акты. Например, освобождение птенцов из гнезда, клевание зерна, сосание молока малышами, ориентировочно — исследовательскую реакции.

Инстинктивное поведение, как и все другие формы поведения, имеет определенную направленность — сохранение и развитие организма в условиях, характерных для жизни этого вида животных.

Согласно учению И.П.Павлова в физиологическом понимании инстинкты представляют собой закрепленные эволюцией цепи сложных безусловных рефлексов, которые включают понуждающие и подкрепляющие рефлекторные звенья.

Другими словами, сложнейшие безусловные рефлексы (например, гнездостроительный, игровой и др.) представленные не одной рефлекторной дугой, а целым комплексом безусловно — рефлекторных реакций.

Этот комплекс включает все генетически обусловленные механизмы, необходимые для формирования соответствующих актов поведения: механизм образований метаболических нужд, механизм биологических мотиваций, механизм предвидения и оценки результатов, механизм достижений цели (К.В.Судаков).

Очевидно, что все механизмы не могут быть сформированные на момент рождения. Некоторые из них (например, половая мотивация) формируется в процессах онтогенеза, по мере формирования и созревание морфофункциональных и эндокринных систем.

Не сразу возникают и координированные движения крыльев у птиц во время полета: эта привычки зависит от обучения.

Ученику И.П. Павлова академику Л.О. Орбели принадлежит аргументированная концепции постнатального созревания безусловных рефлексов под влиянием и при взаимодействии с условными. Например, строительство гнезда у крысы урожденный цепной рефлекс, но его можно разрушить при выращивании крысы в клетке с решетчатым полом, где попытки животных собрать материалы для строительства гнезда раньше заканчивались неудачей (П.В.

Симонов). Урожденный цепной рефлекс высиживание яиц не проявляется в условиях удержания кур в клетках.

В наше время взгляд на исключительно генную природу инстинктов изменился. Гены не могут определить течение онтогенеза независимо от окружающей среды.

Итак, будь — какие типы поведения представляют собой результат генетических и средовых взаимодействий.

Инстинкт также нуждается в “обучении”, что иллюстрируется наличием так называемого импринтинга.

Вместо срока “инстинкт” в настоящее время преимущественно используют выражение “врожденные формы поведения”, подчеркивая лишь их относительную независимость от влияний окружающей среды.

В реализации актов поведения, основанных на урожденных реакциях животных, важную роль выполняют структуры промежуточного мозга (гипоталамуса) и лимбической системы. Благодаря ним реакции поведения носят адаптивный, приспособительный характер и способны поддерживать биохимический и метаболический гомеостаз.

Приобретенные формы поведения

К приобретенным формам поведения относят обучение и умственную деятельность.

Обучение — процесс, благодаря которому жизненный опыты влияет на поведение каждого индивидуума, и разрешает животным развивать новые приспособительные реакции с учетом прошлого опытов, а также изменять те реакции, которые оказались не адаптивными.

Поведение животных при этом становится более гибкой, адаптивной. Как показали исследование И.П.Павлова, в основе обучения лежит образования условных рефлексов.

Условный рефлекс — основная форма обучения. Условный рефлекс — это приспособительная реакции животных, которое возникает путем образований временной нервной связей между двумя центрами возбуждения в коре больших полушарий: центром условного и центром безусловного раздражителей.

Условный рефлекс является функциональной единицей деятельности высших отделов главного мозга.

Можно выделить два типа условных рефлексов: первый тип — это классический Павловский условный рефлекс, второй — оперантный (инструментальный) условный рефлекс.

Оба они воспроизводятся в лабораторных условиях. В первом случае реакции животных на условный раздражитель воссоздает безусловный рефлекс (секреторный или двигательный), а во втором случае — движение, которое является необходимым условиями подкрепления. Например, звонок подкрепляется пищей не каждый раз, а только в том случае, если животные нажимает на рычаг. Примером инструментального условного рефлекса есть процессы питья воды из автопоилки.

Животные нажимает мордой на клапан, вода поступает в поилку и животные пьет. В данном рефлексе оказываются причинно — наследственные отношения, а факт безусловного подкрепления зависит от самого животных.

Условнорефлекторное обучение обеих типов — это ассоциативное обучение т.е. такое, что возникает в результате образований в мозгу связей, которые могут видоизменяет или разрушает при изменениях условий жизни особи.

Существуют и неассоциативные формы обучения, к которым относят: привыкание, латентное обучение подражание, метод проб и ошибок, импринтинг, инсайт.

Привыкание – простейшая форма поведения – она состоит не в выявлении новой реакции, а в потере той, что была раньше.

Если животным предложить раздражитель, который не сопровождается его подкреплением или наказанием, то постепенно животные перестает на него реагировать.

Например, птицы постепенно перестают обращать внимание на чучело, которое принуждает их отлетать, когда его впервые расположить на поле. Похожие с привыканием явления находятся в будь — какой группе животных, начиная с простейших, все типичные свойства привыкания можно найти на уровне отдельных нейронов и нервно — мышечных соединений.

Привыкание представляет собой один из важных процессов приспособления поведения животных к условиям существования. Привыкание также сыграет важную роль в развитии поведения молодых животных, которым часто грозятся разные хищники (они быстро учат не реагировать на листву, когда их шевелит ветер и другие нейтральные стимулы).

Врожденная реакция клевание у только что родившихся цыплят сначала направленная на любой небольшой предмет, но потом происходит привыкание к ненужным объектам.

Латентное обучение по определению Торпа – это образование связи между индифферентными стимулами или ситуациями без явного подкрепления.

Латентное обучение, в его естественном виде, часто является результатом исследовательской деятельности животных в новой ситуации. В процессе исследования условий животные накапливает сведению о них.

2.10. Генетика поведения

От детального знания географии участка проживания зависит жизнь небольшого животных или птицу, когда на него бросается хищник. Информация об окружающей среде позднее может быть использована в процессах поиска пищи или полового партнера.

Многочисленные насекомые осуществляют специальный “рекогносцировочный полет” во время которого фиксируют положение участка относительно Солнца и окраин.

Так, пчелы во время рекогносцировочного полета, который продлевается 1-2 минуты запоминают новое местоположение ульев.

Подражание (наследование) – одна из форм обучения.

На подражание основаны заучивание видовых песен птицами. Молодняк сельскохозяйственных животных путем подражание учится владеть многими необходимыми упражнениями, привычками, например, способностями пастись. При боксовом содержании коров новорожденный теленок, имитируя корову, быстрее приучается к поеданию грубых кормов.

Метод проб и ошибок – осложненный рефлекс, при котором задачи решается в результате слепца поиска.

Этот тип обучения изучал Э.Торндайк, путем использования разнообразных”проблемных сундучков”. Последние представляли собой клетку, которую можно открыть из середины, только нажав на рычаг, или дернув кольцо. Размещенная в такой клетке кошки делает попытку убежать, она без остановки бегает по клетке, пока спустя некоторое время случайно не теребит за кольцо. После второй и третьей попыток кошка концентрирует свое внимание на рычаге, и как только ее замыкают, она бросается к кольцу и теребит за него.

Обучение методом проб и ошибок нередко наблюдается при изменениях поведения животных, которая связана с поиском пищи, хранилища или полового партнера.

Как правило, этот процессы сопровождается образованием условных рефлексов первого порядка, так как должны запоминаться и новые стимулы, и новые реакции поведения.

Пробы и ошибки, достоверно, — категория, которая наиболее подходит и к которой можно отнести образование новых двигательных упражнений. Молодые млекопитающие и птицы, например, совершенствуют координацию своих движений с помощью тренировок, играя с родителями и между собой.

Рис.

6. Гусята следят за Конрадом Лоренцом.

Запечатление – (импринтинг) впервые было описано К. Лоренцом в 1937 году у птиц. Импринтинг также наблюдается у овец, коз, оленей, коней и других животных, малыши которых сразу после рождения способны передвигаться. Выявление импринтинга наблюдается в реакциях следования новорожденных животных за объектом, который двигается. Импринтинг – особая форма обучения, которая имеет много общего с условно рефлекторным обучением, хотя, настроенная не на индивидуальные, а на видовые характеристики.

Формируется лишь на ранних этапах постэмбрионального развития. Так, Лоренц в своих опытах принуждал выводки гусят, которые принимали его за мать, шагать за ним (рис. 6).

Подобные явления наблюдают и у млекопитающих. Ягнята, которых вырастил человек, следуют за ней и не обнаруживают любопытства к другим овцам. Скотт и Филлер обобщили результаты основательных исследований на собаках. Они выяснили, что в возрасте от трех до десяти недель у собак есть чувствительный период, на протяжении которого щенки формируют нормальные общественные контакты.

Щенки изолированные продолжительнее 14 недель в дальнейшем не реагируют на родственников, а их поведение совсем ненормальное.

Инсайт – важнейшая степень приобретенного поведения.

Это поведение основано на понимании. Она возникает преимущественно у наиболее развитых представителей хордовых — приматов. Классический пример инсайта у животных дают ранние опыты Келлера на шимпанзе. Когда несколько бананов цепляли очень высоко, и обезьяны были не в возможности к ним дотащить, они начинали ставить один на один ящики, или вставляли одно в одно палки так, чтобы забраться повыше и сбить бананы на землю.

Чаще они доходили к такому решению целиком неожиданно, хотя и пользовались предыдущим опытом игры с ящиками и палками (латентное обучение), причем для построения стойкой пирамиды из ящиков обезьянам был нужный значительный период проб и ошибок. В поведении человекоподобных обезьян и других приматов нередко проявляются элементы умственной деятельности. Многочисленные владельцы собак приводят примеры, когда их воспитанники выполняют умные действия.

Инсайт можно рассматривать как проявление способности к образному мышлению.

Мышление – высшая форма поведения которая доминирует у человека. У высших животных доказанное наличие элементарной умственной деятельности. Примером может служить инсайт. Иногда после ряда неудачных попыток и паузы, которая потом наступает, животные неожиданно изменяет тактику своего поведения и решает задачу. Итак, в мозгу животных случилась оценка прежде осуществленных попыток, и внесенный корректив в план дальнейших действий.

У высших животных существуют и развиваются в эволюционном плане элементы умственной деятельности. Это приходится возможностью животных решать сложные задачи. Итак, в мозгу животных состоялась оценка раньше сделанных попыток и был внесенный корректив в план дальнейших действий.

У высших животных существуют и в эволюционном плане развиваются элементы умственной деятельности. Это приходится решением животными сложных задач. Рассмотренные формы сложного поведения — обучение и мышления возникают на высших ступеньках эволюции.

Обучение становится доминантным у млекопитающих. Их поведение определяется реакциями, врожденными и приобретенными в результате обучения.

Лекция 3

ПОСМОТРЕТЬ ЕЩЕ:

Изменчивость, обусловленная генетическими факторами

Изменчивость, обусловленная генетическими факторами, представля-ет сложную величину, но если она значительна и известна, то ею можно воспользоваться, чтобы рассчитать возможный выигрыш для тех или иных характеристик деревьев.

Генетическая изменчивость может быть разделена на две основные составляющие: аддитивную и неаддитивную. Если это представить в терминах статистики, то генетическая дисперсия состоит из аддитивной и неад-дитивной компонент дисперсии.

Аддитивная компонента дисперсии-это изменчивость, обусловленная совместным действием аллелей всех генных локусов, влияющих на характеристику. Неаддитивная генетическая изменчивость может быть, в свою очередь, разделена на две части: доминантную и эпистатическую. Доминантная дисперсия обусловлена взаимодействием определенных аллелей, находящихся в одном генном локусе, в то время как эпистатическая дисперсия обусловлена взаимодействием между гена-ми разных локусов.

Эта концепция более детально будет рассмотрена позже.

Здесь же достаточно отметить, что аддитивная часть - одна из важней-ших в программах селекционного улучшения популяций.

Неаддитивная изменчивость может быть использована в других, более специализирован-ных программах, которые включают осуществление специфических скре-щиваний или использование вегетативного размножения для коммерчес-ких целей. В большинстве программ генетико-селекционного улучшения неаддитивная генетическая изменчивость обычно привлекает меньше вни-мания, поскольку аддитивная часть генетической дисперсии может быть легче использована.

Большинство характеристик, имеющих хозяйственно важное значение, находятся в той или иной степени под контролем аддитивной составляю-щей генетической изменчивости (В.

Zobel, J. Talbert, 1984). Это важно, по-скольку аддитивная дисперсия может быть успешно использована в про-стых селекционных системах. Качественные характеристики древесины, такие как плотность, прямизна ствола и другие, в большей степени обус-ловлены аддитивной дисперсией, чем ростовые.

Хотя ростовые показате-ли в некоторой степени контролируются аддитивными генетическими воз-действиями, они также подвержены значительному влиянию неаддитив-ной дисперсии, ассоциированной с ними. Поэтому любая селекционная программа должна включать испытание потомства отобранных фенотипов для определения действительной генетической ценности деревьев.

Ответ на селекцию характеристик со значительной неаддитивной дисперсией, таких как рост, существенно менее удовлетворителен, чем ответ на селекцию качественных характеристик, которые обычно находятся под более строгим генетическим контролем аддитивной составляющей дис-персии.

В отношении характеристик адаптации можно отметить, что этотво-прос до конца пока не выяснен.

Однако имеющиеся данные говорят в пользу наследования этих характеристик аддитивным способом. Это позволяет предположить, что какой-либо выдающийся выигрыш, получен-ный для улучшаемой характеристики деревьев, которые удовлетворитель-но растут в экстремальных или субэкстремальных условиях местопроизрастания, может быть закреплен.

Отбирая деревья с выдающимися характе-ристиками, которые растут лучше в этих условиях, и используя затем их семена, можно рассчитывать на облесение подобных территорий деревья-ми с нужными хозяйственно важными признаками.

Устойчивость к энтомовредителям включает как аддитивную, так и неаддитивную дисперсию в зависимости от вида насекомых и деревьев. Но обычно хорошие результаты возможны при использовании в селекци-онных программах аддитивной части генетической изменчивости.

Вышеизложенные принципы должны использоваться селекционерами в начале их работы по той или иной программе селекции.

Первые этапы работы должны включать определение величины и вида изменчивости в исходных природных или окультуренных популяциях, с тем чтобы потом использовать их разумным образом.

Раздел 1. Общие вопросы генетики поведения.

Контроль внешних воздействий среды позволяет лучшим образом использовать генетическую изменчивость.

Для выявления и использования генетически обусловленной изменчивости чаще всего применяют определенные системы скрещиваний или спариваний (mating systems). Тип системы скрещивания внутри вида ока-зывает главное влияние на изменчивость изучаемых образцов.

Перекрест-ное опыление (outcrossing), которое наиболее характерно для большинст-ва видов лесных древесных растений, как правило, производит высоковариабельные (гетерозиготные) в генетическом плане популяции.

При перекрестном опылении различные генотипы успешно скрещиваются друг с другом, и только небольшая часть скрещиваний происходит между женскими и мужскими органами одного и того же растения или между близкородственными индивидуумами.

Если происходит последнее, т. е. пыльца дерева или данного генотипа опыляет собственные женские цветки, говорят о самоопылении (selfmg). To же самое происходит, если опыление осуществляется между раметами одного и того же клона.

Даже если раметы (прививки, корневые отпрыски и т. п.) являются отдельными растениями, они генетически идентичны.

Поэтому при создании лесных семенных плантаций следует заботиться, чтобы прививочные деревья (раметы) одного и того же клона не высаживались в непосредственной близости друг от друга.

Следует отметить, что перекрестные системы поддерживают высокую степень генетической изменчивости, в то время как при самоопылении генетическое разнообразие существенно снижается.

Как правило, сила рос-та также значительно снижается, когда происходит близкородственное скрещивание, т. е. как бы происходит возвращение от гибридной к исход-ной силе роста.

Та или иная степень родства характерна для естественных насаждений. По этой причине рекомендуется брать только одно отобран-ное лучшее дерево из насаждения для создания лесных семенных планта-ций в одном месте.

Степени родства могут быть самыми разнообразными. Для лесных древесных растений мало известно о влиянии родных или двоюродных “братьев” и “сестер” или других родственных скрещиваний.

Однако их неблагоприятные последствия хорошо изучены на сельскохозяйственных растениях и поэтому рекомендуется их избегать. Наиболее общее явле-ние-уменьшение семеношения, хотя были и исключения, когда при спа-ривании полусибсов и даже полных сибсов такого явления не наблюда-лось. Но общим было не только снижение семеношения, но и снижение всхожести при самоопылении.

Когда же получались жизнеспособные се-янцы, они часто имели худший рост (Ericsson et al, 1973 - цит. по В. Zobel, J.Talbert, 1984). О неблагоприятных последствиях самоопыления отмеча-лось еще и раньше (А. С. Яблоков, 1965; Э. Ромедер, Г. Шенбах, 1962 и др.; см. также главу).

Результаты изучения самоопыления у различных видов хвойных и лиственных древесных пород показали, что могут встречаться следующие варианты последствий (В. Zobel, J.

Talbert, 1984; Ю.Н. Исаков, В.Л. Семериков, 1997 и др.):

1. Никаких здоровых семян не формируется.

2. Семена формируются, но они не образуют всходов.

3. Семена всхожие, но сеянцы ненормальные и часто живут только короткое время, а затем погибают.

4. Сеянцы выживают, но они мелкие, слабые, часто с пожелтевшими листьями и медленно растущие. Некоторые из них могут быть диагностированы и удалены на стадии питомника, до посадки на постоянное место.

Сеянцы растут медленнее, чем у нормальных деревьев, но это недостаточно заметно, чтобы удалить их на стадии питомника. Дальнейшее выращивание их нежелательно, так как они производят меньше древе-сины, чем сеянцы, полученные от перекрестного опыления.

6. Сеянцы растут так же хорошо, а иногда даже лучше, как и те, что получены от перекрестного опыления. Самоопыляемые деревья, потом-ство которых растет так же хорошо, как и от перекрестного опыления, очень редки.

Все это говорит о том, что при создании лесных семенных плантаций необходимо сначала изучать исходный материал и возможность его использования в системах перекрестного опыления или самоопыления.

Использование инбредных линий, впоследствии скрещиваемых перекрестно, предложено в качестве селекционной системы.

Этот метод широко используется в сельском хозяйстве. Однако мало практиковался в программах селекции лесных древесных пород по нескольким причинам: hизкой семенной продуктивности самоопылителей, низкой силы роста инбредного потомства, а также значительного уменьшения запаса древесины в селекционных популяциях.

В целом по материалам данного раздела следует отметить, что генетическая изменчивость - очень важный момент селекционных программ может быть существенно увеличена посредством внутрилокусных и межлокусных взаимодействий, мутаций, миграций и других факторов эволюции.

Более подробно эти явления будут рассмотрены при последующем изложении.

Люди отличаются друг от друга рядом психологических характеристик. Эти различия вызваны как неодинаковыми условиями жизни, так и несходными генотипами, поскольку генотипы людей содержат разные формы генов. Соотносительный вклад наследственности и среды в разнообразие людей по психологическим свойствам и поведению изучает психогенетика. Для оценки влияния наследственности и среды на поведение человека ученые сравнивают людей, имеющих различную степень генетической общности (однояйцевых и многояйцевых близнецов, родных и сводных братьев и сестер, детей и их биологических и приемных родителей).

Многие гены существуют в нескольких формах, подобно тому, как есть разные формы гена, определяющего цвет глаз. Некоторые гены имеют десятки форм. Генотип конкретного человека содержит два экземпляра каждого гена, формы которых могут быть разными, а могут быть и одинаковыми. Один унаследован от отца, другой - от матери. Сочетание форм всех генов уникально для каждого человеческого организма. Эта уникальность лежит в основе генетически обусловленных различий между людьми. Вклад генетических различий в разнообразие людей по психологическим свойствам отражает показатель, называемый "коэффициент наследуемости". Например, для интеллекта коэффициент наследуемости составляет, по меньшей мере, 50%. Это не означает, что 50% интеллекта дано человеку от природы, а остальные 50% нужно добавить путем обучения, тогда интеллект будет 100 баллов. Коэффициент наследуемости не имеет отношения к конкретному человеку. Его вычисляют, чтобы понять, в чем причина отличия людей друг от друга: возникают ли различия из-за того, что у людей неодинаковые генотипы, или потому, что их по-разному учили. Если бы коэффициент наследуемости интеллекта оказался близок к 0%, то можно было бы сделать вывод, что только обучение формирует различия между людьми, и применение одних и тех же воспитательных и образовательных приемов к разным детям будет всегда приводить к одним и тем же результатам. Высокие значения коэффициента наследуемости означают, что даже при одинаковом воспитании дети будут отличаться друг от друга в силу своих наследственных особенностей. Конечный результат, однако, не предопределен генами. Известно, что дети, усыновленные в благополучные семьи, по уровню интеллектуального развития оказываются близки к своим приемным родителям и могут значительно превосходить биологических. В чем же тогда выражается влияние генов? Поясним это на примере конкретного исследования.*

Ученые обследовали две группы приемных детей. Условия в приемных семьях были у всех одинаково хорошими, а биологические матери детей различались по уровню интеллекта. Биологические матери детей из первой группы имели интеллект выше среднего. Примерно половина детей из этой группы продемонстрировала интеллектуальные способности выше средних, другая половина - средние. Биологические матери детей второй группы имели несколько сниженный (но в пределах нормы) интеллект. Из этой группы 15% детей имели такие же невысокие оценки интеллекта, у остальных детей уровень интеллектуального развития соответствовал среднему. Таким образом, при одинаковых условиях воспитания в приемных семьях, интеллект детей, в определенной степени, зависел от интеллекта их кровных матерей.

Приведенный пример может служить иллюстрацией существенных различий между понятием наследуемости психологических качеств и наследуемости некоторых физических особенностей человека, таких как цвет глаз, кожи и т.д. Даже при высоком уровне наследуемости психологического признака генотип не предопределяет его конечного значения. От генотипа зависит, как ребенок будет развиваться в определенных условиях среды. В некоторых случаях генотип задает "пределы" выраженности признака.

Влияние наследственности на интеллект и характер в разных возрастах

Исследования показывают, что гены отвечают за 50-70% разнообразия людей по уровню интеллекта и за 28-49% различий по выраженности пяти "универсальных", наиболее важных, свойств личности:

  • тревожности,
  • дружелюбию,
  • сознательности,
  • интеллектуальной гибкости.

Это данные - для взрослых. Однако степень влияния наследственности зависит от возраста. Результаты психогенетических исследований не подтверждают распространенное мнение, что с возрастом гены все меньше влияют на поведение человека. Генетические различия, как правило, сильнее проявляются в зрелом возрасте, когда характер уже сформировался. Значения коэффициента наследуемости большинства изученных психологических свойств для взрослых выше, чем для детей. Наиболее точные данные получены по наследственной обусловленности интеллекта. В младенчестве внутрипарное сходство многояйцевых близнецов такое же высокое, как для однояйцевых, но после трех лет оно начинает снижаться, что можно объяснить большим влиянием генетических различий. При этом нарастание различий происходит не линейно. В ходе есть этапы, в которые различия между детьми вызываются преимущественно влиянием среды. Для интеллекта это возраст 3-4 года, а для формирования личности - предподростковый возраст 8-11 лет.

Кроме того, в разных возрастах действуют разные генетические факторы. Так среди наследственных факторов, обуславливающих различия по интеллекту, есть как стабильные, т.е. действующие во всех возрастах (это, возможно, гены, связанные с так называемым "общим интеллектом"), так и специфические для каждого периода развития (вероятно, гены, определяющие развитие частных способностей).

Влияние наследственности на асоциальное поведение

Поскольку во всех развитых странах преступность и алкоголизм биологических родителей являются распространенными причинами утраты ребенком кровной семьи и помещения в приемную, мы подробнее рассмотрим данные психогенетики о влиянии наследуемости на эти формы поведения. Семейные и близнецовые исследования криминального поведения проводятся уже более 70 лет. Они дают очень разные оценки наследуемости, наиболее часто попадающие в диапазон 30-50%. "Верхние" значения наследуемости получают при изучении близнецов. Некоторые исследователи считают, что близнецовый метод может давать завышенные оценки наследуемости, так как он не всегда позволяет отделить генетические влияния от особых условий среды, в которых растут однояйцевые близнецы. Методом изучения приемных детей получают значения коэффициента наследуемости примерно в 2 раза ниже, чем при изучении близнецов.

Датское исследование приемных детей


Рисунок 1. Количество проанализированных семей,

(датское исследование).

Наиболее систематические исследования наследуемости криминального поведения методом изучения приемных детей были проведены в скандинавских странах - Дании и Швеции. Благодаря сотрудничеству родителей-усыновителей и ряда органов власти, датским ученым удалось проследить судьбу более 14 000 лиц, усыновленных в период с 1924 по 1947 гг. На рисунках 1 и 2 показаны результаты исследования судимости у мужчин, выросших в приемных семьях. Они относятся только к преступлениям против собственности, поскольку количество преступлений, связанных с применением насилия, было мало.


Рисунок 2. Доля сыновей, имевших судимости, в семьях,
различающихся по наличию судимости у биологического и приемного отца
(датское исследование).

Из рисунка 2 видно, что доля осужденных среди детей, биологические отцы которых были преступниками, несколько повышена по сравнению с теми детьми, биологические родители которых не нарушали закон. Кроме того, оказалось, что чем больше судимостей у биологического отца, тем выше риск для потомка стать преступником. Было показано также, что братья, усыновленные разными семьями, имели тенденцию к конкордантности (совпадению) по преступному поведению, особенно в тех случаях, когда их биологический отец был преступником. Эти данные свидетельствуют об определенной роли наследственности в повышении риска криминального поведения. Однако, как и из приведенного выше примера с интеллектом, из данных на рисунке 2 следует, что неблагоприятная наследственность не предопределяет будущее ребенка - из мальчиков, биологические отцы которых были преступниками, впоследствии нарушили закон 14%, остальные 86% не совершили противоправных действий.

Кроме того, оказалось, что на детей с неблагоприятной наследственностью приемная семья оказывает особенно сильное влияние, которое может быть как положительным, так и отрицательным. Из мальчиков, выросших в приемных семьях, 16% впоследствии совершили преступления (против 9% в контрольной группе). Среди биологических отцов этих детей 31% имели проблемы с законом (против 11% в контрольной группе). Т.е. хотя уровень преступности среди приемных детей был выше, чем в обществе в среднем, он был почти в два раза ниже, чем среди их биологических отцов. По мнению ряда ученых, это свидетельствует о том, что благоприятная обстановка в приемной семье снижает риск криминального поведения у детей с отягощенной наследственностью.

Но в некоторых случаях семейная среда может усиливать риск криминального поведения. Как видно из рисунка 2, дети, у которых и биологический и приемный отец имели судимости, совершали преступления чаще других. (К счастью, таких семей было очень мало (рис.1)). Это значит, что существуют генотипы, обладающие повышенной уязвимостью к неблагоприятным аспектам семейной среды (подобные явления в психогенетике называют генотип-средовым взаимодействием).

Шведское исследование

При исследовании приемных детей в Швеции ученые сначала не нашли даже слабой связи между судимостью детей, воспитанных приемными родителями, и поведением их биологических отцов. Среди шведов преступления были в основном следствием злоупотребления алкоголем. Когда ученые исключили из анализа этот вид преступления, они обнаружили слабую положительную связь между наличием судимости у потомства и их кровных отцов (рис. 3). При этом преступления в обоих поколениях оказались не тяжкими. В основном это были кражи и мошенничество.


Рисунок 3. Процент судимых среди усыновленных лиц
в зависимости от типа семьи
(шведское исследование).

Подтвердилась и чувствительность детей с наследственной отягощенностью к особенностям приемной семьи. Среди усыновленных шведов не наблюдалось повышения уровня преступности по сравнению со средним показателем по стране, несмотря на то, что среди их биологических родителей процент осужденных был увеличен. Среди приемных родителей-шведов не было лиц, имевших судимости. Т.е. максимально благоприятная семейная среда "нейтрализовала" эффект генетического груза. С другой стороны, наиболее высокий риск нарушить закон наблюдался у тех детей с неблагоприятной наследственностью, приемная семья которых имела низкий социально-экономический статус (рис. 3).

Американское исследование


Рисунок 4. Результаты изучения причин, приводящих к формированию асоциальной личности,
в американском исследовании приемных детей
(стрелки означают статистически значимую связь между характеристиками родителей и формированием асоциальных наклонностей у детей).

Скандинавские исследования включали в себя анализ поведения приемных детей, родившихся в первой половине 20-го века. Сходные результаты были получены и в современной работе американских ученых из штата Айова. Правда, в ней анализировали не судимость, а наличие у приемных детей склонности к асоциальному поведению более широкого спектра. Оценивали поведение, которое служит основанием для диагноза "асоциальное расстройство личности" и включает в себя частое совершение поступков, за которые могут арестовать, а также такие черты как лживость, импульсивность, раздражительность, пренебрежение безопасностью, безответственность и бессовестность. Учитывали также целый ряд характеристик приемной семьи, которые могли бы повлиять на формирование подобных наклонностей. На рисунке 4 перечислены эти характеристики и показаны основные результаты исследования на тот момент, когда усыновленные лица уже достигли взрослого возраста (им было от 18 до 40 лет). Были проанализированы данные только о мужчинах, поскольку количество женщин с "асоциальным поведением" оказалось слишком мало. Из 286 исследованных мужчин сорока четырем был поставлен диагноз "асоциальное расстройство личности". Результаты свидетельствовали, что в развитие данного расстройства вносят независимый вклад три фактора:

  1. судимость биологического родителя (генетический),
  2. пьянство или асоциальное поведение одного из членов приемной семьи (средовой),
  3. помещение ребенка с неблагоприятной наследственностью в семью с низким социально-экономическим статусом (генотип-средовое взаимодействие).

Что представляет собой наследственная предрасположенность к асоциальному поведению?

Очевидно, что у человека гены не запускают конкретное поведение подобно тому, как это происходит с некоторыми инстинктивными действиями животных. Связь между риском преступного поведения и генами опосредствована психологическими особенностями. Причем известно, что на риск криминального поведения могут влиять различные неблагоприятные сочетания психологических свойств, и каждое из этих свойств находится под контролем нескольких или большого количества генов и разных факторов среды.

Первым кандидатом на роль биологического "субстрата" асоциальных наклонностей стала Y-хромосома (хромосома, которая содержится только в генотипе мужчин и определяет мужской пол). Примерно у одного из 1100 мужчин в результате биологических ошибок в сложном процессе создания зародышевой клетки в генотипе оказывается вместо одной две или более Y-хромосом. Эти мужчины отличаются невысоким интеллектом (у нижней границы нормы) и высоким ростом. В 60-х годах XX века было впервые показано, что среди отбывающих наказание преступников со сниженным интеллектом непропорционально много (4%) мужчин с лишней Y-хромосомой. Сначала связь между этим генетическим дефектом и криминальными наклонностями казалась очевидной: поскольку мужчины агрессивнее женщин, чаще совершают преступления и в отличие от женщин имеют Y-хромосому, наличие двух и более Y-хромосом должно приводить к формированию агрессивного "супермужчины". Но в дальнейшем выяснилось, что преступники с лишней Y-хромосомой не более агрессивны, чем другие заключенные, и в тюрьму они попадают, в основном, совершив кражи. При этом у мужчин с данной генетической патологией была найдена связь между снижением интеллекта и вероятностью быть осужденным. Не исключено, однако, что сниженный интеллект влиял не на риск совершить преступление, а на риск быть пойманным и посаженным в тюрьму. Например, один из мужчин с лишней Y-хромосомой несколько раз проникал в дома с помощью взлома, когда хозяева находились в помещении.

Исследования мужчин с лишней Y-хромосомой позволяют сделать, по меньшей мере, два важных заключения. Во-первых, связь между генами и преступностью нельзя объяснить генетически обусловленным возрастанием агрессивности или жестокости, как можно было бы предположить, исходя из "здравого смысла". Этот вывод согласуется и с данными исследований приемных детей, в которых влияние наследственности обнаружилось только для преступлений против собственности. Во-вторых, даже среди мужчин с такой очевидной наследственной аномалией, как лишняя Y-хромосома, большинство не становится преступниками, речь идет только о некотором повышении риска подобного поведения среди них.

С середины 90-х годов ученые проводят поиск конкретных генов, которые могли бы влиять на величину риска криминального поведения. Все полученные к настоящему времени данные еще нуждаются в подтверждении и уточнении. Однако заслуживает упоминания исследование, проведенное в Новой Зеландии. В нем было показано, что среди мальчиков, подвергавшихся жестокому обращению в семье, носители формы гена, обеспечивающего более высокую активность фермента МАОА в организме, были менее склонны к асоциальным поступкам, чем носители другой формы гена - низкоактивной. Среди детей, выросших в благополучных семьях, связи между асоциальными наклонностями и геном МАОА не было. Т.е. лица с определенными генетическими особенностями оказались менее уязвимыми к жестокому обращению с ними родителей. Это исследование заставило ученых задуматься о том, правомерно ли вообще говорить о наследственной предрасположенности (склонности) к асоциальному поведению. Возможно, более точным было бы понятие генетически обусловленной уязвимости (незащищенности) некоторых детей по отношению к неблагоприятным, травмирующим событиям.

Влияние наследственности на злоупотребление алкоголем

Давно замечено, что преступность и злоупотребление алкоголем тесно связаны. Более того, психогенетические исследования позволили предположить, что есть общие для этих форм поведения "гены предрасположения". Выявлены также и некоторые сходные закономерности во влиянии наследственности и среды на преступность и злоупотребление алкоголем. Например, для обеих форм поведения существенное влияние общей среды** обнаруживается в подростковом возрасте. Влияние общей среды проявляется, в частности, в том, что братья и сестры, растущие в одной семье (даже если они не родные), больше похожи друг на друга по асоциальным проявлениям и привычкам, связанным с употреблением алкоголя, чем на своих родителей. Однако злоупотребление алкоголем - это довольно сложное с поведенческой и генетической точки зрения явление, поскольку включает в себя и бытовое пьянство и алкоголизм как развившееся постепенно психическое заболевание (главный диагностический признак которого - непреодолимое психологическое влечение к алкоголю).

Очевидно, что в этих двух случаях роль генов различна, но разделить эти две формы злоупотребления алкоголем в психогенетическом исследовании бывает довольно сложно. Возможно, поэтому оценки наследуемости алкоголизма колеблются в довольно широких пределах. Наиболее вероятным интервалом представляется диапазон 20-60%. Среди сыновей больных алкоголизмом заболевает, по разным данным, в среднем 20-40%, а среди дочерей - от 2 до 25 % (в среднем около 5%). При этом можно считать установленным, что возраст, с которого начали употреблять алкоголь, и интенсивность его потребления на первых этапах полностью определяется действием среды. Отметим, что употребление алкоголя в раннем возрасте (обычно до 15 лет) является фактором риска развития алкоголизма. Отсутствие генетических влияний на этот признак указывает на важную роль родительского поведения, сдерживающего употребление алкоголя подростками, в предотвращении развития алкогольной зависимости. Вместе с тем, в дальнейшей эскалации потребления спиртного и развитии алкоголизма отчетливо обнаруживаются генетические эффекты и генотип-средовые взаимодействия.

Подчеркнем, однако, еще раз, что человек не рождается алкоголиком и не существует какого-либо одного "гена алкоголизма", так же как не существует "гена преступности". Алкоголизм является результатом длинной цепи событий, сопровождающих регулярное употребление спиртного. Большое количество генов в определенной степени влияет на эти события. Так, от характера молодого человека зависит, как часто он будет выпивать и будет ли знать меру, а характер, как уже упоминалось, зависит как от воспитания, так и от генотипа. Кроме того, в силу своих генетических особенностей люди в разной степени чувствительны к токсическим эффектам алкоголя. Например, у части японцев, корейцев и китайцев найдена такая форма гена, влияющего на переработку алкоголя в печени, обладание которой ведет к очень сильному отравлению спиртным. Человек с такой формой гена, выпив алкоголь, ощущает тошноту, прилив крови к лицу, головокружение и раздражение. Эти неприятные ощущения удерживают человека от дальнейшего употребления спиртного, поэтому среди носителей данной формы гена почти не встречается больных алкоголизмом. Наконец, не у всех людей, регулярно употребляющих алкоголь, развивается непреодолимая тяга к нему. Существуют гены (сейчас идет их интенсивный поиск), от которых зависит, приведет ли длительное действие алкоголя на мозг к алкогольной зависимости. При этом гены не запускают конкретные формы поведения, не "заставляют" человека пойти и выпить. Если человек знает о том, что предрасположен к алкоголизму, он может избегать ситуаций, в которых поощряется употребление спиртного, и оставаться здоровым.

Детей алкоголиков часто называют группой множественного риска. Примерно у 1/5 из них обнаруживаются различные проблемы, которые требуют особого внимания родителей, педагогов, а иногда и врачей. Преимущественно это неусидчивость и невротические расстройства (тики, страх темноты и пр.). Реже наблюдаются трудности в усвоении школьной программы, еще реже другие - более серьезные - расстройства, например, судорожные состояния. Эти нарушения не являются проявлениями каких-либо дефектов генетического аппарата и вызваны неблагоприятными условиями, в которых матери вынашивают беременность и растят малышей. Исследования приемных детей показали, что алкоголизм кровных родителей не увеличивает вероятность того, что в будущем ребенок заболеет каким-либо серьезным психическим расстройством.

Суммируя существующие данные о влиянии наследуемости на асоциальное поведение и алкоголизм, можно сделать следующие выводы.

  • Существует положительная, хотя и очень слабая связь между преступностью кровных отцов и их сыновей, выросших в приемных семьях.
  • Эта закономерность обнаруживается только для нетяжких преступлений, поэтому нет оснований считать, что риск стать преступником объясняется у приемных детей генетически обусловленным повышением агрессивности или жестокости.
  • Данные указывают, что благоприятная семейная среда может нейтрализовать врожденные особенности, связанные с повышением риска криминального поведения, а неблагоприятная - усилить их.
  • Развитие асоциальных наклонностей не является неотвратимым даже у носителей серьезных генетических аномалий.
  • Возраст, с которого начали употреблять алкоголь, и интенсивность его потребления на первых этапах полностью определяется действием различных средовых факторов. Генетические эффекты и генотип-средовые взаимодействия обнаруживаются лишь для последующей эскалации потребления спиртного и развития алкоголизма.

*Willerman L. Effects of families on inteelectual development. Цит. по "Психогенетика" И.В. Равич-Щербо и др.

** Средовые влияния в психогенетике подразделяют на общую и индивидуальную среду. Под общей средой понимают все ненаследственные факторы, которые делают сравниваемых родственников из одной семьи похожими между собой и не похожими на членов других семей (можно предположить, что для психологических свойств это стили воспитания, социально-экономический статус семьи, ее доход и пр.). К индивидуальной среде относят все ненаследственные факторы, формирующие различия между членами семьи (например, уникальный для каждого ребенка круг друзей, одноклассников или учителей, запомнившиеся ему подарки или поступки взрослых, вынужденная изоляция от сверстников в результате какой-нибудь травмы или другие индивидуальные события).

Алфимова Маргарита Валентиновна,
кандидат психологических наук,
ведущий научный сотрудник лаборатории клинической генетики
Научного центра психического здоровья РАМН

Комментарий Проекта "К новой семье"

Стоит учитывать, что на момент постановки задачи исследования были заданы очень узкие граничные условия, которые не учитывали несколько серьезных факторов:

  • мотивация и степень подготовленности усыновителей к роли родителей,
  • уровень тревожности будущих родителей,
  • возраст попадания ребенка в семью и уровень его депривации в кровной семье или учреждении, где он воспитывался,
  • возможности семьи методично, самостоятельно или с помощью специалистов, к работе по компенсации имеющихся у ребенка соматических и психологических проблем.

Всем этим факторам раньше не придавали существенного значения.

При изучении отмены усыновлений и возникающих психологических проблем в приемных семьях, была выявлена очень высокая взаимосвязь между успешностью и мотивацией усыновителей, а также подготовленностью их к роли родителей. Достаточно часто будущие родители оказывались не достаточно готовы к принятию ребенка. Например, хотели решить приемом в семью ребенка вопросы статуса семьи в обществе, восстановить взаимоотношения между друг другом, обрести наследника, воспитать идеального ребенка или вундеркинда, и не были готовы принять его со всеми его особенностями и проблемами. Это приводило к тому, что они не смогли полюбить его и создать дружественную, а только менторскую среду воспитания. До возраста 6-12 лет стиль воспитания не сильно влияет на возникновение серьезных детско-родительских конфликтов и асоциальных проявлений в поведении ребенка, однако менторская среда или так называемый "ответственный стиль воспитания" срабатывает к подростковому возрасту и резко повышает вероятность возникновения конфликтов, развивающихся в формы протестного (часто асоциального характера) поведения ребенка.

Усугубляет положение повышенная подозрительность и тревожность за поведение ребенка, что часто приводит к ошибкам воспитания, выраженным в крайних формах воспитательного воздействия - импульсивных, неоправданно жестких мерах или попустительстве, оправдываемом "неотвратимостью судьбы" и списания своей воспитательной некомпетентности на гены. Таким образом, асоциальное поведение кровных родителей является не генетическим, но мощным психологическим фактором давления на приемных родителей, провоцирующим риски неадекватного воспитательного воздействия на ребенка . Влияние тревожности будет подробно рассмотрено в отдельной статье.

Вторым по степени влияния фактором на возникновение асоциального поведения является исходный уровень поражения нервной системы ребенка и успешность ее компенсации в замещающей семье. Возникают такие поражения нервной системы вследствие:

  • пренатальной интоксикации плода алкоголем, лекарственными препаратами,
  • кислородного голодания, недостатка микроэлементов для нормального развития нервной системы при плохом питании будущей матери,
  • родовых травм,
  • материнской депривации ребенка в первые дни и годы жизни, а при попадании ребенка в учреждение отсутствие естественного общения с ним и должного ухода.

Серьезность влияния институциональной среды было замечено достаточно давно и описано в 30-х годах 20-го века (Эмми Пиклер), но влияние родительской компетентности в компенсации на успешность усыновления заметили только в конце 70-х годов. Ребенок с депривационными проблемами требует специального коррекционного воздействия, иначе недокомпенсированные медицинские и психологические проблемы начинают проявлять себя в виде девиантного поведения в период, когда происходят бурные гормональные изменения в организме ребенка, а родители уже не имеют полной власти над ребенком - в подростковом возрасте .

Обсуждение

А мы тоже усыновили мальчика в 1,5 года. Отдали ему всю душу и силы. Все мамашки восхищались... Но, к сожалению, сейчас видно, что он ни в чем не хочет прилагать усилия. Все интересно на уровне баловства, напрягаться и учиться он не хочет. Как будто воли нет.. не может стараться, легче отказаться ему от самых заманчивых перспектив... Сейчас ребенку 10 лет. Но уже сейчас не знаю, чем он займется... Требований я не завышаю. Уж не знаю, наследственность это (он - подкидыш, про родителей вообще ничего не известно), или родовая травма, но факт остается фактом. Наблюдаемся у невропатолога.. Вот порекомендовали психотерапевта, походим... может что подскажет... Смешно мне обвинения всякие читать... типа не достаточно любят... И любили, и любим... но найти ему применение в этой жизни пока не смогли.. Многие хорошие люди подключались, хотели помочь... тоже души много вложили, в все бестолку... Боюсь, что вырастет растение... Честно говоря, читаю письма других усыновителей и понимаю, что опасения мои имеют основания. Ребенка, правда, все устраивает:)

29.07.2012 22:26:09, Полинаааа

К сожалению, всё больше людей склонны к поспешным выводам, непродумав все возможные влияния и комбинации. Это происходит потому, что людям необходимо поскорее знать ответ на насущные вопросы-проблемы, особенно на те проблемы, которые им людям представляют угрозу (в данной статье это увеличивающаяся преступность в мире, получив тем самым обманчивую иллюзию информации ("предупреждён - значит вооружён"), превращая нашу науку во всем нам знакомую религиозную системы веры и примитивных догм. Когда-то древние люди (и некоторые современные) пытались из-за недостатка своего знания о причинах возникновения проблем, вставших перед ними абсолютизировать свои поспешные выводы, превратив их в систему информационно-ментального подчинения - веру, так как эти выводы не имели необходимую оформленность, то они не могли быть реализованными в мире без системы беспрекословного подчинения, избегающего изменения этих выводов. В данной статье делается всё та же попытка "поскорее" найти причины проблемы, на основе недостаточных данных и абсолютизировать поспешные выводы, не принимая многих факторов во внимания.

13.05.2008 15:22:14, Argyrogespera El"Feya

Старцы правильно говорят. Но передаются, к сожалению, не только греховные сущности, но и поведенческие модели, и даже кармическое предопределение будущего развития судьбы детей. (Как энергетическая матрица человека закрепляется на физическом уровне – разговор отдельный.) Но это важно понимать не только при усыновлении, но и при выборе партнёра для создания семьи. Т.е., например, глупо жениться на той, чья семья и родители далеки от того, что ты хотел бы для своих детей. Какая бы любовь ни была у неё, со временем она всё равно начнёт повторять естественную для неё линию поведения и судьбы. Не зря говорят, хочешь узнать, какой будет жена, посмотри на тёщу, хочешь узнать, что ждёт тебя в семье, посмотри на её семью. К сожалению, закон о том, что если плохое возможно, то оно неизбежно случается – для достаточно продолжительных отрезков жизни вполне справедлив. И ребёнка, и супруга надо подбирать по образу и подобию того, что ты бы хотел для себя. Необходимо и правильно оценивать свою ответственность перед будущими поколениями твоих потомков. Да и вообще, пора бы уж задуматься не только о количественных, но и о качественных параметрах демографических тенденций.

11.05.2008 19:29:15, Boris

Люди религиозные говорят: через кровь грехи родительские передаются. Некоторые старцы не советуют усыновлять - это очень тяжело. Во всяком случае, зависит от духовной закалки (как бороться с "кровью"?). Случай, о котором говорит Нина, не единичный.

02.05.2008 12:19:52, Ольга

усыновили мальчика в полгода. до 7 лет не успею отвернуться бежит на помойку.Не слушался как только начал говорить.Не хотел уч иться с 1-го класса.Помогли получить Высшее образование-не хотел учиться.Уже 18 лет не работает.Сеичас ему 35 лет.Отданы все силы и здоровье зря.Нина

26.04.2008 19:56:56

Побольше бы таких статей. Приемным родителям приходится идти методом проб и ошибок.
Желательно наработки наших специалистов и главное- бесценный опыт приемных родителей со стажем.
Глава примной семьи, воспитывающей 12 детей, из них девять - приемные.

13.07.2006 20:10:40, Старостин Сергей

А остальные наши не читали???

Кстати, спасибо Ирине Шамаевой связались с авторами Колорадского проекта исследования психогенетики (на приемных детях)сейчас идёт процесс обсуждения что нового интересного и получение статей.

2003 marks the 27th year of the Colorado Adoption Project (CAP), classifying it as one of the longest running studies of its kind. The purpose of the CAP is to study both nature and nurture, to determine the genetic predispositions as well as the environmental influences that contribute to traits such as intelligence, personality, and behavior. In order to do this a wide range of interviews are conducted with participating families. These include in-person and telephone interviews that measure cognition, social attitudes, and behavioral choices. The CAP is an ongoing research project of the Institute for Behavioral Genetics,

Наконец-то хоть одна внятная, (а не только для специалистов) статья. Когда знаешь, что практически все - в твоих руках, появляются силы делать еще больше.
Равно ка и замечание Алексея, что над ребенком довлеют не гены, а страх родителей перед этими генами.
Спасибо.
Р.С. В нашем, частном случае, статья помогла принять решение - не искать био-родителей. Ни к чему.

1.2. История развития генетики поведения как науки.

1.3. Понятие признака в генетике поведения

1.4. Методы оценки признаков поведения (поведенческое фенотипирование).

1.5. Некоторые п ринципы генетического анализа поведения.

Глава 2. Пути реализации генетической информации на уровне поведения

2.1. Генетика морфологических особенностей нервной системы и их связь с изменчивостью признаков поведения.

2.2. Связь поведения с некоторыми биохимическими показателями.

2.3. Гормональная регуляция изменчивости признаков поведения и эндокринологическая генетика.

ЧАСТЬ П. СПЕЦИАЛЬНАЯ ГЕНЕТИКА ПОВЕДЕНИЯ ПРЕДСТАВИТЕЛЕЙ НЕКОТОРЫХ ТАКСОНОМИЧЕСКИХ ГРУПП.

Глава 3 . Генетика поведения бактерий.

3.1. Генетические основы социального поведения бактерий.

3.2. Генетика хемотаксиса у бактерий.

3.3. Самоидентификация и взаимное узнавание бактерий.

Глава 4. Генетика поведения одноклеточных животных

4.1. Особенности поведения одноклеточных животных.

4.2. Генетика поведения инфузорий

4.3. Генетика поведения Dictyostelium discoideum

Глава 5. Генетика поведения беспозвоночных животных.

5. 1. Генетика поведения круглых червей.

5. 2. Генетика поведения моллюсков.

5. 3. Генетика поведения насекомых

5.3.1. Насекомые как объект генетики поведения.

5.3.2. Влияние отдельных генов на поведение насекомых

5.3.3. Некоторые аспекты генетики поведения общественных насекомых.

5.3.4. Генетические основы нейрогуморальной регуляции поведения насекомых.

5.3.5. Эволюционные аспекты поведения насекомых.

5.3.6. Генетика полового поведения близких видов саранчовых (Acridoidea)

Глава 6. Генетика поведения дрозофилы.

6.1. История изучения поведенческих мутаций дрозофилы.

6.2. Зрительные мутации дрозофилы.

6.3. Мутации двигательной системы у дрозофилы.

6.4. Температурочувствительные мутации у дрозофилы

6.5. Мутации, нарушающие циркадные ритмы у дрозофилы

6.6. Мутации, изменяющие половое поведение дрозофилы.

6.7. Использование мозаиков для выявления структур, затронутых поведенческими мутациями.

6.8. Метод локализации фокуса действия мутации на карте презумптивных органов дрозофилы.

6.9. Селекционно-генетический метод в анализе поведения дрозофилы.

Глава 7. Генетика поведения птиц.

7.1. Птицы как объект генетического анализа поведения.

7.2. Средовая модификация некоторых форм врожденного поведения у птиц.

7.3. Импринтинг и его роль в постнатальном онтогенезе выводковых птиц.

7.4. Гибридологический анализ поведения птиц.

7.5. Отдельные гены и признаки поведения птиц.

7.6. Эволюционная модификация поведения птиц.

Глава 8. Генетика поведения млекопитающих.

8.1. Генетика поведения собак.

8.2. Генетика поведения грызунов.

8.3. Генетика поведения кошек.

8.4. Генетика поведения лошадей и крупного рогатого скота.

8.5. Генетика поведения лис.

Раздел 1. ОБЩИЕ ВОПРОСЫ ГЕНЕТИКИ ПОВЕДЕНИЯ.

Глава 1. Введение в генетику поведения животных.

1.1. Предмет, цели, задачи, методы и место генетики поведения в системе биологических наук.

Поведение - один из важнейших способов активного приспособления животных к многообразию условий окружающей среды. Оно обеспечивает выживание и успешное воспроизведение, как отдельной особи, так и вида в целом.

Поведением называют активность живого организма, направленную на взаимодействие с окружающей средой. Обычно под поведением понимают внешне проявляемое поведение, то есть те действия, которые могут быть замечены наблюдателем. В наиболее общем понимании поведение - это формируемый организмом отклик на сигналы, поступившие к нему от окружающей среды.

Поведение животных на организменном и надорганизменном уровне стало самостоятельным предметом научного исследования в конце XIX века. Термин «поведение животных» был введен в качество научного термина в 1898 году зоологами Ч. Уитманом и К.Л. Морганом.

Исследование поведения животных началось одновременно в рамках трех дисциплин: зоологии, психологии и физиологии. Зоологи сосредоточились главным образом на изучении видоспецифичного поведения животных, психологов интересовало поведение животных в связи с проявлением тех или иных психических способностей, а физиологи изучали нейрофизиологические механизмы поведения. С конца XIX века вся область исследования поведения и психики животных получила название зоопсихологии.

К середине ХХ века в области изучения поведения животных сформировались два ведущих направления: американская школа сравнительной психологии и европейская школа этологии.

Направление сравнительной психологии предполагало, что поведение животных почти целиком формируется внешней средой в процессе научения, представляя собой сочетание немногих безусловных и разнообразных условных рефлексов. Представители этологической школы считали, что поведение животных является генетически фиксированным, врожденным. Они также утверждали, что это поведение основано на сложных механизмах, не сводящихся только к рефлексам. Со временем оба направления стали осуществлять активный обмен идеями и взаимное заимствование методов исследования.

На рубеже 70-х гг. ХХ века появилось еще два зоологических направления в изучении поведения животных – социобиология и поведенческая экология. Сформировался интерес к изучению развития поведения в онтогенезе.

Таким образом, поведение животных давно привлекало внимание биологов. Им интересовались зоологи, экологи, физиологи, психологи. Поведение стало предметом изучения этологии и зоопсихологии, а с появлением науки генетики оно стало также и объектом генетического анализа.

Генетика поведения - сравнительно молодая область знаний, сформировавшаяся на стыке генетики, биологии развития и комплекса наук, который включает в себя психологию, зоопсихологию, этологию, экологическую физиологию и другие дисциплины. Она является по своей природе междисциплинарной областью знаний.

Таким образом, генетика поведения – это интегрированное направление науки, предметом которого является изучение онтогенеза обширного класса биологических функций организма, именуемых «поведением».

В процессе своего развития, генетика поведения оказалась связанной с такими науками как нейрофизиология, эндокринология, психиатрия, биохимия, антропология, селекция, эволюционная биология и многими другими науками, объединяя их вокруг своей проблематики.

Основной целью генетики поведения является выяснение роли генетических факторов в определении особенностей поведения. Достижение этой цели связано с решением ряда задач:

    определение относительной роли и взаимодействия генетических и средовых влияний при формировании поведения в онтогенезе;

    изучение наследуемости стереотипных форм адаптивного поведения;

    исследование механизма действия генов, определяющих развитие нервной системы;

    изучение механизмов реализации действия мутантных генов, затрагивающих функцию ЦНС;

    изучение генетико-популяционных механизмов формирования поведения и его изменений в процессе микроэволюции.

Важной проблемой генетики поведения стало выяснение относительного вклада наследственности и влияния окружающей среды в формирование поведенческого фенотипа. Генетики соглашались с тем, что любая форма поведения яв­ляется генетически детерминированной нормой реакции на среду. Но для них было важно определить относительный вклад генетических и средовых факторов в развитие различных форм поведения.

Было обнаружено, что в различных средах возникают различные поведенческие эффекты, поскольку под влиянием среды генетические различия могут не только меняться, но и полностью подавляться. Хотя генотип животного остается постоянным в течение жизни, его поведенческие признаки могут существенно изменяться в процессе онтогенеза. Вероятно, и относительный вклад генотипа в индивидуальные различия может меняться в про­цессе развития организма. Меняется он и в процессе эволюционного развития. Будучи жестко генетически детерминированным у просто организованных животных, поведение, по мере продвижения организмов по ступеням эволюционного развития, постепенно освобождается от «диктата отдельных генов», приобретает большую пластичность, зависимость от среды, обеспечивающую адаптационные возможности вида в колеблющихся и меняющихся условиях. Это не означает, что наследственность теряет контроль над поведением, но формы этого контроля существенно изменяются, обеспечивая эволюционные выгоды для вида в целом.

Надо заметить, что термин «среда» в генетике поведения включает в себя множество факторов, влияющих на всех уровнях организации живого: молекулярном, клеточном, тканевом, организменном, надорганизменных уровнях.

К основным направлениям изучения генетики поведения относятся:

    изучение детерминации онтогенеза поведения и генетической детерминации поведенческих реакций на уровне целого организма;

    изучение корреляций между некоторыми биохимическими и поведенческими фенотипами, выявление физиологических и биохимических каналов, через которые реализуется генетическая информация на уровне поведения;

    изучение роли поведения в микроэволюционных процессах и эволюционной модификации самого поведения;

    изучение механизмов эволюционно-генетических преобразований домашних животных, и также анализ корреляционных связей между теми или иными свойствами поведения домашних животных и показателями продуктивности;

    изучение генетических закономерностей, обусловливающих полиморфизм наследственных заболеваний нервной системы.

Существуют и другие направления. В современной генетике поведения лидирует направление, получившее название «нейрогенетика».

Нейрогенетика - это дисциплина, развившаяся на стыке генетики, нейробиологии и биологии развития. Это раздел генетики поведения, предметом которого является изучение наследственных механизмов деятельности нервной системы.

Нейрогенетика изучает экспрессию генов в связи с пластичностью поведения, занимается скринингом и позиционным клонированием мутаций, влияющих на поведение и функции мозга, осуществляет молекулярно-генетический анализ когнитивных процессов, изучает морфогенетические, молекулярные и физиологические механизмы развития и функционирования нервной системы и особенности формирования нервных сетей в онтогенезе. Для этого ученые используют молекулярно-биологические, биохимические, физиологические и морфологические методы.

Нейрогенетики исследуют самые разнообразные живые объекты. Это и млекопитающие, и насекомые, и моллюски, и амфибии. Но предпочтение отдается генетически хорошо изученным объектам, таким, например, как дрозофила (Рис.1.а.) и мышь (Рис.1.). В последнее время широко используются также быстро размножающиеся объекты - червь Caenorhabditis (Рис.2.) и рыбка Данио (Zebrafish) (Рис.3).

Рис.1.а. Drosophila melanogaster

Рис.1. Мышь Mus musculus

Рис.2. Нематода Caenorhabditis elegans

Рис.3. Zebrafish Danio rerio

Генетические исследования поведения и ней­рофизиологических процессов ведутся с использованием двух подходов:

    подход «от гена к поведению» предполагает исследование функ­ции гена на молекулярном и физиологическом уровнях с последую­щим анализом влияния этого гена на поведение;

    подход «от поведения к гену» направлен на изучение генетической компоненты изменчивости поведения с последующим анализом отдельных хромосом, генных комплексов и отдельных генов.

Подход «от гена к поведению» реализуется путем изучения генов, кодирующих ферменты и структурные белки, которые определяют общие и специфические признаки нервных клеток и клеток нейроглии, Изучаются также гены, кодирующие белки, связанные с функцией ЦНС как целого. Исследуется и влияние от­дельных локусов, детерминирующих взаимодействие мозга с эндо­кринной системой, а также генов, участвующих в синтезе веществ химической сигнализации и генов, детерминирующих специфику поведе­ния у беспозвоночных животных, в особенности у насекомых.

Подход «от поведения к генам», предполагает иные экспериментальные методы, отличающиеся от тех, которые используются при анализе работы отдельных генов. В таких исследованиях важен выбор адекватного признака для анализа и соблюдение правил генетического анализа поведения. Нужен признак, который представляет собой естественную «единицу» той или иной формы поведения. Успешный поиск такого признака связан с нейрофизиологическими основами поведения.

Внимание ис­следователей привлекали разные при­знаки у разных видов животных: предрасположенность к судорогам, общая возбудимость, локомоторная активность, ориентировочно-исследовательские реак­ции, разные аспекты репродуктивного поведения, классические и инструментальные условные реакции, реактивность к фармакологи­ческим веществам.

Для исследования роли генотипа в формировании поведения исследователи чаще выбирали либо те признаки, которые легко поддаются количественному учету (напри­мер, четкие видоспецифичные движения), либо те признаки, которые легко измерить по степени выраженности (например, уровень локо­моторной активности, измеряемый по длине пройденного живот­ным пути за фиксированное время опыта).

Дополнитель­ные трудности при проведении генетических исследований вызывало то, что многие признаки поведения весьма существенно зависят от ряда внеш­них по отношению к нервной системе факторов, например от сезо­на, гормонального фона организма и т.д. Кроме того, если в эксперимент берутся не клоны, то всегда присутствует еще и генетический компонент изменчивости признаков поведения. Многие из этих признаков могут варьировать, обнаруживая фенотипическую изменчивость в пределах нормы реакции, размах которой определяется генотипом.

Для поведенческих признаков характерна еще одна специфическая форма изменчивости – это изменчивость признаков поведения животных, которая связана с воздействием индивидуального опыта, т.е. с разными формами обучения, формированием представлений и т.д.

Генетика поведения пользуется самыми разными методами исследования: генетическими, молекулярно-биологическими, цитологическими, гистологическими, биохимическими, физиологическими, морфологическими и другими методами смежных наук. Основной группой методов, безусловно, являются генетические.

Методы изучения генетики поведения совершенствовались по мере разработки математических приёмов для оценки количественных признаков. Именно количественная природа многих поведенческих признаков позволяет широко использовать в генетике поведения классические методы количественной генетики и селекции. Например, анализ фенотипической вариансы, разложение ее на паратипическую и генотипическую компоненты; разложение генотипической компоненты на фиксируемую (обусловленную аддитивным взаимодействием) и нефиксируемую (зависящую от доминирования или эпистатического взаимодействия) составляющие.

Но применение методов количественной генетики при анализе поведения сопряжено со значительными трудностями, поскольку многие поведенческие признаки не поддаются строгой количественной оценке.

Классический гибридологический анализ в генетике поведения применяется ограниченно, а вот его модификация - диаллельные скрещивания - нашла очень широкое применение. Этот метод позволяет анализировать результаты системы множественных скрещиваний между собой нескольких линий животных. Суть метода заключается в оценке средних величин признака и их дисперсии у животных нескольких (минимум трёх) инбредных линий, а также гибридов всех возможных сочетаний. Результатом использования данного метода является получение величин компонент дисперсии и величин, характеризующих уровни ковариации признаков у разных генетических групп.

Помимо данных о характере генетической изменчивости признака поведения, результаты диаллельных скрещиваний иногда позволяют получить информацию, существенную для понимания физиологических процессов, лежащих в основе проявления этого признака.

Для изучения генетики поведения объектов, частная генетика которых хорошо изучена, становится возможным проведение дальнейших этапов генетического анализа: разложение генетической изменчивости на компоненты, зависящие от вклада отдельных групп сцепления.

Генетика поведения использует и селекционные методы . Первые селекционные эксперименты были посвящены исследованию способности крыс к обучению в лабиринте. В настоящее время осуществляется селекция многих поведенческих признаков: это двигательная активность, уровень эмоциональной реактивности, половое поведение, алкогольное предпочтение и др. Главные результаты селекционных экспериментов заключаются в создании контрастных по особенностям поведения линий животных. Наличие таких линий имеет особую ценность в генетических исследованиях поведения, так как, с одной стороны, позволяет направленно комбинировать зафиксированные путём отбора генотипы, а с другой - даёт возможность применять перекрестное воспитание и оценивать постнатальные материнские эффекты.

Но при отборе по сложным поведенческим признакам, в реализации которых принимают участие различные физиологические системы (сенсорные, ассоциативные, эффекторные), селекционный метод оказывается недостаточным.

Широко используемой моделью в генетике поведения животных является создание инбредных линий. Инбредные линии представляют собой популяции практически идентичных генетически особей, полученные путём скрещивания полных братьев и сестёр в ряду поколений. В последнее время исследователи научились получать инбредные линии путём клонирования.

Генетики изучают генетически идентичные линии в разных условиях. Поскольку все особи инбредной линии считаются генетически одинаковыми, то наблюдаемые различия в поведении могут быть обусловлены пре- или постнатальными средовыми факторами.

Но информация, которую можно получить в результате простого сравнения инбредных линий, отличающихся по особенностям поведения, довольно противоречива. Поэтому ученые заняты поиском корреляций поведенческих признаков с нейрофизиологическими и биохимическими признаками.

Современный этап развития науки обогатил генетику поведения такими методами как метод рекомбинантных инбредных линий (РИЛ) и сравнения характера распределений значений различных признаков в группе РИЛ (strain distribution pattern), метод QTL (quantitative trait loci) анализа, методы создания и исследования мозаичных и химерных животных, методы создания трансгенных организмов и животных-нокаутов.

Метод рекомбинантных инбредных линий в ряде случаев позволяет выявить небольшое число «главных» генов, обеспечивающих наибольший вклад в изменчивость данного полигенного признака, а также дать информацию об их локализации в хромосоме.

Активное развитие молекулярно-биологических методов и накопление данных, полученных с их помощью, позволило существенно усовершенствовать метод РИЛ и успешно проводить картирование локусов количественных признаков (QTL анализ).

Эффективной молекулярной технологией, которая существенно повысила эффективность анализа сложно наследуемых признаков, стал анализ микрочипов (microarray analysis), метод, который позволяет исследовать тысячи генов одновременно. При использовании этого метода геном организма экстрагируется и помещается в определённые участки на чипе, который предварительно выдерживается в растворе, содержащем молекулы РНК, экспрессированные в определённых типах клеток, и флуоресцентную метку. Если данный ген экспрессируется в данном типе клеток, молекулы РНК из раствора комплементарно с ним связываются (пригибридизуются), что обусловливает свечение соответствующего сегмента. Чем сильнее экспрессия гена, тем ярче флуоресценция.

Используются в генетике поведения и мутационные модели , поскольку оперируя одним геном, исследователь имеет больше возможностей для выяснения механизмов воздействия этого генам на поведенческие признаки. При этом используют несколько подходов. Один их них – это изучение поведенческих эффектов уже известных мутаций, например тех, для которых уже выяснен биохимический механизм их проявления, например блокирование активности определённых ферментов. Второй подход предполагает использование имеющихся или выделение новых нейрологических мутаций.

По мере возрастания интереса к эволюционной и популяционной генетике поведения, усиливается тенденция использования в опыте диких животных. В подобных исследованиях изучают различия в поведении, возникшие в результате биологической специализации близких видов животных или внутривидовой дивергенции и используют методы эволюционной и популяционной генетики.

Интересные результаты при изучении генетики поведения показало использование метода нокаутов (knockout study). Этот метод хорошо разработан для применения на мышах, но для более крупных млекопитающих он разработан слабо, и совсем не применим в исследованиях на человеке. Метод нокаутов предполагает инактивацию конкретного гена в стволовых клетках. Эти клетки затем помещаются в эмбрион, который имплантируется в матку самки. Гаметы появившегося потомства проверяют на наличие выключенного гена. И те, которые его несут, используют в дальнейшей селекции для получения линии мышей-нокаутов, т.е. линии все животные в которой имеют нехватку конкретного гена. Поведение этих животных сравнивают с интактными. Если поведение отличается, делают вывод о том, что исследуемый ген влияет на данную поведенческую реакцию.

С помощью метода нокаутов можно вставлять или инактивировать даже небольшие сегменты ДНК, для того, чтобы определить функции составных частей гена. Исследователи также могу перемещать ген из одной точки генома в другую, что бы понять, как место расположения гена влияет на его экспрессию.

Среди поведенческих признаков мыши, изученных методом нокаута, двигательная активность, исследовательское поведение, обучение и память, социальные взаимодействия и стресс ответ.

Для анализа поведенческих признаков человека активно и успешно используются классические методы генетики человека: семейный (генеалогический) анализ, близнецовый метод, метод приёмных детей, анализ сцепления, анализ ассоциаций.

Несмотря на разнообразие методов, исторически сложилось всего несколько подходов в изучении генетики поведения и анализа наследования поведенческих признаков.

Первый подход заключается в определении поведенческих различий между различными линиями того же самого вида или между тесно родственными видами.

Второй подход связан с селекцией животных по определенным поведенческим признакам.

Третий подход предполагает изучение влияния отдельных генов на поведение.

Но при любом их этих подходов ученые, занимающиеся генетикой поведения, сталкиваются с одинаковыми трудностями.

Первая трудность – это трудность унификации условий эксперимента. Различия в жизненном опыте, накопленном животными до эксперимента, влияют на их поведение во время эксперимента. Поэтому необходим тщательный контроль практически всех условий эксперимента, это является совершенно необходимым условием в исследованиях по генетике поведения.

Вторая трудность связана с трудностью объективных измерений. Элемент субъективности, который может быть сведен к минимуму при анализе биохимических, физиологических и морфологических признаков, серьезно влияет на исследования в области генетики поведения.

И, наконец, ученые, занимающиеся генетикой поведения, сталкиваются с явлениями научения и рассудочной деятельности , а других областях генетики с этим обычно дела не имеют. Это обстоятельство можно считать наиболее существенной уникальной особенностью генетики поведения как специфической отрасли генетики.

Изучать генетические основы поведения сложно, прежде всего, потому, что для поведенческих признаков характерна широкая норма реакции и высокая онтогенетическая лабильность. Поэтому генетика поведения не приобрела еще той стройности и логической структурированности, которые характерны для других областей генетики. Но она тесно взаимодействует с ними, объединяя вокруг своей тематики множество смежных наук. Эта интеграционная функция и определяет место генетики поведения среди других генетических наук.