Гистология. Методы исследования центральной нервной системы Некоторые особенности заливки нервной ткани

Значение нервной ткани в организме определяется основными свойствами нервных клеток (нейронов, нейроцитов) воспринимать раздражение, приходить в состояние возбуждения, вырабатывать импульс и передавать его.

Нервная ткань состоит из нейронов (neuronum ), выполняющих специфическую функцию, и нейроглии (neuroglia ), обеспечивающей существование нервных клеток и осуществляющей опорную, трофическую, разграничительную, секреторную и защитную функции.

Признание нейрона основным элементом нервной ткани – главное достижение нейроанатомов начала XX в. Физиологи определили, какими электрическими и химическими способами нейрон передает свои сигналы. Эти два достижения не раскрывают, каким образом работает мозг, но они служат необходимым фундаментом для этого.

Прогресс в детальном изучении строения мозга связан с успехами ранних исследований по микроструктуре, проводившихся, например, английским анатомом Аугустом фон Валлером. Онразработал химический метод, позволивший выделять пучки отмирающих нервных волокон (так называемая валлеровская дегенерация). Окрашивание по этому методу помогло установить, что длинные волокна, образующие периферические нервы, – это отростки клеток, находящихся внутри головного и спинного мозга. Некоторые крупные из них можно было даже увидеть с помощью примитивных микроскопов. Хотя микроскопы были и раньше, очень сложные и компактные клеточные структуры мозга с трудом поддавались исследованию. Понадобились новые красители, чтобы отдельные клетки стали хорошо видимыми.

Итальянский анатом К. Гольджи примерно в 1875 г. изобрел метод, при котором одновремен-но окрашивается, по-видимому в случайном порядке, лишь очень малая доля всех клеток данного участка, но зато они окрашиваются целиком. При хорошо выполненном окрашивании по Гольджи на препарате видны лишь несколько нейронов, но каждый из них полностью, со всеми своими ветвями. Просмотрев много срезов мозга, окрашенных по Гольджи, анатом может дать перечень разных клеток в этой ткани. До сих пор неизвестно, как и почему срабатывает метод Гольджи, окрашивая полностью одну из 100 клеток и совершенно не затрагивая все остальные.

Современник К. Гольджи – испанец С. Рамон-и-Кахал посвятил всю свою плодотворную жизнь приложению нового метода практически ко всем частям нервной системы. Его гигантская «Histologic du systеme nerveux de l’homme et des vertebres» («Гистология нервной системы человека и позвоночных животных»), впервые опубликованная в 1904 г. на испанском языке, до сих пор остается самой фундаментальной монографией по нейробиологии. Во времена Рамон-и-Кахала шел спор о степени непрерывности между клетками. Отделены ли клетки одна от другой полностью, или же они соединены от аксона к дендриту в непрерывную сеть? Если бы существовала непрерывность протоплазмы, то сигналы, генерируемые одной клеткой, могли бы переходить в соседнюю, не прерываясь; если же непрерывности нет, то тогда должен существовать специальный процесс генерации сигналов заново в каждой клетке.

На препаратах Кахала, окрашенных по Гольджи, выявляется множество обособленных, полностью окрашенных клеток, и никогда не было видно ничего похожего на сеть. Таким образом, его первым большим достижением явилось представление о нервной системе как о совокупности отдельных, обособленных клеток, которые сообщаются друг с другом с помощью синапсов.

Кахал внес второй вклад в науку, пожалуй, еще более значительный: собрал множество данных о том, что сложные связи между нейронами не случайны, а высоко структурированы и специфичны. Он дал исчерпывающее описание архитектоники десятков различных структур мозга и в каждом случае идентифицировал и классифицировал разные клетки, а иногда показывал, насколько позволяли его методы, как эти клетки связаны между собой. Стало ясно, что если нейробиолог хочет понять мозг, он должен не только изучить, как построены разные его части, но и раскрыть их назначение и детально исследовать их работу как отдельных структур и в совокупности. Но сначала нужно узнать, как отдельный нейрон генерирует сигналы и передает их следующей клетке.

Долгое время нейроанатомам приходилось довольствоваться подробными описаниями, основанными на световой микроскопии с окрашиванием по Гольджи и по Нисслю (Nissl) (последнее выделяет тела отдельных клеток без дендритов и аксонов). Первым действенным орудием прослеживания связей между разными мозговыми структурами, например между разными областями коры большого мозга или между корой и стволом мозга и мозжечком, явился метод окрашивания, который предложил в начале 50-х годов XX в. в Голландии У. Наута (W. Nauta). Он основан на том, что при разрушении нейрона (механическим, электрическим или тепловым воздействием) отходящее от него нервное волокно дегенерирует и, пока оно еще не совсем исчезло, окрашивается иначе, чем соседние нормальные волокна. Если разрушить определенную часть мозга и через несколько дней окрасить мозг методом Науты, а затем исследовать под микроскопом, то наличие избирательно окрашенных волокон в какой-либо другой и, возможно, даже отдаленной его части будет означать, что эта часть получает волокна от разрушенного участка. Такой метод привел к необычайному расширению и детализации карты мозга.

За последнее десятилетие благодаря новейшим эффективным методам нейроанатомия продвинулась вперед больше, чем за предыдущие 50 лет. Успехи достигнуты отчасти благодаря усовершенствованным химическим методикам и лучшему пониманию того, как различные вещества воспринимаются нейронами и передаются в обоих направлениях вдоль нервных волокон. Типичным примером может служить радиоавтография. Радиоактивное вещество вводится в ту или иную структуру мозга, тела клеток поглощают его, пересылают по своим аксонам, и оно накапливается в их окончаниях. Если затем приготовить срез ткани мозга, наложить его на фотоэмульсию и исследовать под микроскопом расположение проявленных зерен серебра, удается выявить «места назначения» аксонов. Можно вводить другие вещества, которые, наоборот, воспринимаются нервными окончаниями и передаются по аксонам в обратном направлении – к телу клетки, выявляя место возникновения аксона.

Важным достижением явилась методика, разработанная Л. Соколовым в Национальном институте охраны психического здоровья в США. Глюкоза служит «топливом» для нейронов, и в активном состоянии клетки потребляют больше глюкозы, чем в покое. Меченая дезоксиглюкоза усваивается клетками, как если бы это была глюкоза. Она расщепляется, как глюкоза, но продукт первого этапа ее метаболизма не подвергается дальнейшим превращениям. Не имея возможности выйти из клетки, этот продукт скапливается в ней, и степень радиоактивности в определенных клетках указывает на их функциональную активность. Можно поставить, например, такой опыт: ввести это вещество внутривенно лабораторному животному, а затем предъявить звуковой раздражитель; микроскопическое исследование мозга позволит выявить те его области, которые связаны со слухом. Достаточно недавно разработана новая методика – позитронно-эмиссионная томография, которая позволяет обнаруживать с помощью наружных датчиков присутствие дезоксиглюкозы или других веществ, меченных радиоактивными изотопами, испускающими позитроны. Эта перспективная методика делает возможным картирование активных структур мозга in vivo у лабораторного животного или у человека.

Применение всех существующих методик для выявления в первом приближении, без деталей, связей в одной только структуре (скажем, в части коры больших полушарий или в мозжечке) может занять у одного-двух анатомов пять или десять лет. А поскольку мозг состоит из сотен разных структур, становится ясно, что одного только понимания связей в головном мозгу придется ждать еще много лет.

Этапы окрашивания нервной ткани 1. Подготовка препарата Фиксация ü Обезвоживание ü Заливка ü Приготовление раствора ü 2. Окрашивание

Окрашивание нейронов. Метод Ниссля 1. 2. 3. 4. 5. 6. Фиксация Получение и окрашивание срезов Обезвоживавние Приготовление раствора Методика окрашивания Результат

Упрощенный метод Ниссля Фиксированный в спирте материал заливают в спирт целлоидин. Срезы собирают в 70 % спирт, где их можно хранить долгое время. Методика окраски 1. Расправленные срезы помещают в 0, 1 % раствор толуидинового синего или тионина, который после этого дважды нагревают до появления паров. 2. После охлаждения ополаскивают в воде и 70 % спирте. 3. Дифференцируют в 96 % спирте. 4. Проводят через 100 % спирт, ксилол, бальзам или окрашивают, как указано выше; дифференцируют в анилиновом масле со спиртом. 5. Извлекают срезы на предметное стекло, просушивают фильтровальной бумагой. 6. Просветляют кайепутовым маслом, затем масло сливают. 7. Просушивают, проводят через ксилол и заключают в бальзам. Результат: глыбки тигроида, ядерная оболочка и ядрышки интенсивно синие или фиолетовые, цитоплазма ганглиозных и глиальных клеток бледно синяя, волокнистое нервное вещество не окрашено

Окрашивание нервных волокон. Метод Шпильмейера Методика окраски 1. Срезы промывают в 3 сменах дистиллированной воды. 2. Переносят на предметное стекло, смазанное смесью белка с глицерином, и подсушивают на воздухе. 3. Погружают в 2, 5 % раствор железоаммонийных квасцов на 2 сут (можно дольше) и держат в темном месте. 4. Промывают в 3 сменах дистиллированной воды и обезжиривают в 96 % спирте 15 - 30 мин. 5. Помещают в гематоксилин (15 мл гематоксилина Бемера и 85 мл дистиллированной воды) на 1 сут и держат на свету. 6. Промывают в 3 сменах дистиллированной воды и дифференцируют в 2, 5 % растворе железоаммонийных квасцов (контролируя процесс под микроскопом). 7. Промывают в дистиллированной воде, затем оставляют на 30 мин в проточной воде. 8. Просушивают на воздухе, проводят через ксилол и заключают в бальзам. Результаты: на светлом слегка желтоватом фоне миелиновые волокна темно серо синеватого оттенка; ядра дренажной олигодендроглии в белом веществе того же оттенка.

Метод Хеквиста Методика окраски 1. Срезы проводят через 100 %, 96 %, 80 %, 70 % спирты и дистиллированную воду. 2. Переносят в 0, 5 % раствор фосфорно молибденовой кислоты на ночь. Одновременно готовят краситель (35 мл 1 % водного раствора метиленового синего + 35 мл 1 % водного раствора желтого или красного эозина, через 1 сут после приготовления растворы сливают и добавляют 120 мл воды). 3. Срезы быстро ополаскивают в дистиллированной воде и переносят на ночь в краситель. 4. Ополаскивают в воде, быстро проводят через спирты и ксилол, заключают в бальзам. Результаты: на синем фоне ткани миелиновая оболочка нервных волокон приобретает окраску от розовой до ярко красной, осевые цилиндры окрашиваются в темно синий цвет.

Метод окрашивания синапсов Гольджи-Дейнеки 1. Материал фиксируют в свежем растворе АФА (состоит из равных частей 96 % спирта, 20 %нейтрального формалина и насыщенного раствора мышьяковистой кислоты) до 3 ч. 2. Промывают в 1 % растворе нитрата серебра и оставляют в этом растворе на срок от 18 дней до 2, 5 мес. . 3. Переносят в восстановительную смесь, в состав которой входят 2 г гидрохинона, 0, 5 г сульфита натрия, 5 мл 40 % нейтрального формалина и 100 мл дистиллированной воды, на 1 сут. 4. Проводят через 70 %, 80 %, 96 % спирты по 3 ч в каждом и оставляют в 100 % спирте на ночь. 5. Переносят в 6 % целлоидин на 2 - 3 сут, затем в 8 % целлоидин на 2 сут (лучше только в 6 % целлоидин на 2 - 3 сут). 6. После заливки на блоках готовят срезы толщиной от 15 до 30 мкм и переносят их в 70 % спирт. 7. Промывают срезы в дистиллированной воде и погружают до почернения в вираж (1, 5 г тиосульфата натрия, 1, 5 г тиоцианата аммония, 50 мл дистиллированной воды, на каждые 10 мл виража 1 мл 1 % трихлорида золота). 8. Дифференцируют до просветления в растворе перманганата калия (2 - 3 кристалла на 50 мл дистиллированной воды + 1 капля серной кислоты). 9. Не промывая срезы, погружают их в 1 % раствор щавелевой кислоты на 1 - 3 мин (щавелевая кислота отмывает перманганат калия). 10. Проводят через карбол ксилол 1- 2 мин, 2 - 3 порции ксилола и заключают. Результат: фон препаратов светлый, тела нейронов и дендриты светло серого цвета. Аксонные синаптические окончания импрегнируются интенсивно, дендриты - более интенсивно.

Метод Глисса в модификации Владимировой 1. Небольшой кусочек ткани головного мозга погружают в жидкость Бодиана (5 мл формалина, 5 мл ледяной уксусной кислоты и 90 мл 80 % спирта) на 3 - 4 дня. 2. Промывают в проточной воде в течение 24 ч. 3. Срезы толщиной 12 - 15 мкм получают на замораживающем микротоме, ополаскивают в дистиллированной воде и помещают на 24 ч в 50 % спирт, добавив в него 10 капель крепкого аммиака. 4. Ополаскивают в дистиллированной воде и помещают в 10 % раствор нитрата серебра на срок от нескольких часов до 5 дней (пока срез не станет коричневым). 5. Не ополаскивая, переносят в 10 % формалин, меняя его несколько раз, пока не исчезнет муть. 6. Ополаскивают в проточной воде. 7. Погружают на 30 с (можно до 1 мин) в смесь, состоящую из 10 мл 100 % спирта и 10 мл 20 % раствора нитрата серебра (выпадающий осадок растворяют аммиаком, прибавляя его по каплям). 8. Переносят в 10 % формалин, меняя несколько раз до исчезновения мути. 9. Промывают в дистиллированной воде и помещают в 1 % раствор хлорного золота до появления стального цвета. 10. Переносят в 5 % раствор тиосульфата натрия. 11. Промывают в дистиллированной воде. 12. Переносят на предметное стекло, подсушивают на воздухе, затем проводят через ацетон, ксилол, заключают в бальзам. Результат: на сером фоне видны темные нервные клетки, ядра, нейрофибриллы в нервных клетках и синаптических волокнах, синаптические окончания

Третий метод Рамон-и-Кохаль Материал фиксируют 24 ч в смеси 50 мл 96 % или 100 % спирта и 1- 12 капель (для большого мозга 1- 3 капли, моз жечка- 4, спинного и продолговатого мозга- 8- 12, периферических окончаний - 2 - 3) раствора аммиака (молекулярная масса 0, 910). Если аммиака добавлено слишком много, то импрегнация получается бледная. Сжатие можно уменьшить, если объект вначале поместить на 6 ч в 70 % спирт, затем на 2- 4 ч в 85 % спирт и лишь после этого перенести в аммиачный спирт. После обсушивания фильтровальной бумагой обработку проводят так же, как при использовании метода II.

Окраска глии методом Рамон-и. Кохаля 1. Срезы промывают в 3 сменах дистиллированной воды и переносят на 2 сут в свежий бромистый фиксатор (14 мл нейтрального формалина, 2 г бромида аммония и 100 мл дистиллированной воды). 2. Тщательно промывают в 3 сменах дистиллированной воды и переносят в раствор трихлорида золота с сулемой (8 мл 5 % прозрачного раствора сулемы, 10 мл 1 % раствора трихлорида золота и 60 мл дистиллированной воды) на 1 сут в темное место. 3. Промывают в 3 сменах дистиллированной воды и помещают в 5 % раствор тиосульфата натрия на 1 мин. 4. Переносят в дистиллированную воду, затем наклеивают на предметное стекло, смазанное смесью белка с глицерином, подсушивают на воздухе до полного высыхания. 5. Просветляют в ксилоле и заключают в бальзам под покровное стекло. Результат: в белом веществе на сиреневом фоне (разной интенсивности) четко определяются черновато фиолетовые фиброзные астроциты, а в сером веществе - более светлые

Окраска глии методом Хорнеца 1. Срезы переносят в дистиллированную воду, на 100 мл которой добавлено 15 капель раствора аммиака (недолго). 2. Помещают в 5 % раствор бромисто водородной кислоты на 1 ч при температуре 37 °С. 3. Промывают в 3 сменах дистиллированной воды, а затем в дистиллированной воде, к которой добавлено несколько капель уксусной кислоты. 4. Переносят на 15- 24 ч в раствор, состоящий из 1 г трихлорида золота в 75 мл дистиллированной воды +25 мл 2 % сулемы+18 мл дистиллированной воды + 15 капель уксусной кислоты, препараты приобретают темно коричневую или красно коричневую окраску. 5. Помещают в 5 % раствор щавелевой кислоты (до приобретения ими серой окраски). 6. Ополаскивают в дистиллированной воде, переносят в 5 % раствор тиосульфата натрия с несколькими каплями раствора аммиака; быстро ополаскивают и заключают. Результат: на сиреневом фоне выявляются темно синие фиброзные астроциты с отростками, видны капилляры и красные эритроциты в их просвете.

Нервная ткань является основным компонентом нервной системы. Она состоит из нервных клеток и клеток нейроглии. Нервные клетки способны под действием раздражения приходить в состояние возбуждения, вырабатывать импульсы и передавать их. Эти свойства определяют специфическую функцию нервной системы. Нейроглия органически связана с нервными клетками и осуществляет трофическую, секреторную, защитную функции и функцию опоры.

Нервные клетки -- нейроны, или нейроциты, представляют собой отростчатые клетки. Размеры тела нейрона колеблются в значительных пределах (от 3--4 до 130 мкм). По форме нервные клетки также очень разные. Отростки нервных клеток проводят нервный импульс из одной части тела человека в другую, длина отростков от нескольких микрон до 1,0--1,5 м.

Различают два вида отростков нервной клетки. Отростки первого вида проводят импульсы от тела нервной клетки к другим клеткам или тканям рабочих органов, они называются нейритами, или аксонами. Нервная клетка имеет всегда только один аксон, который заканчивается концевым аппаратом на другом нейроне или в мышце, железе. Отростки второго вида называются дендритами, они древовидно ветвятся. Их количество у разных нейронов различно. Эти отростки проводят нервные импульсы к телу нервной клетки. Дендриты чувствительных нейронов имеют на периферическом конце специальные воспринимающие аппараты -- чувствительные нервные окончания, или рецепторы.

По количеству отростков нейроны делятся на биполярные (двухполюсные) -- с двумя отростками, мультиполярные (многополюсные) -- с несколькими отростками. Особо выделяют псевдоуниполярные (ложные однополюсные) нейроны, нейрит и дендрит которых начинаются от общего выроста тела клетки с последующим Т-образным делением. Такая форма характерна для чувствительных нейроцитов.

Нервная клетка имеет одно ядро, содержащее 2--3 ядрышка. Цитоплазма нейронов, помимо органелл, характерных для любых клеток, содержит хроматофильное вещество (вещество Ниссля) и нейрофибриллярный аппарат. Хроматофильное вещество представляет собой зернистость, образующую в теле клетки и дендритах не резко ограниченные глыбки, окрашивающиеся основными красителями. Оно меняется в зависимости от функционального состояния клетки. В условиях перенапряжения, травмы (перерезка отростков, отравление, кислородное голодание и др.) глыбки распадаются и исчезают. Этот процесс получил название хроматолиза, т. е. растворения.

Другим характерным компонентом цитоплазмы нервных клеток являются Тонкие нити - нейрофибриллы. В отростках они лежат вдоль волокон параллельно друг пруту, в теле клетки образуют сеть.

Нейроглия представлена клетками различной формы и величины, которые делятся на две группы: макроглию (глиоциты) и микроглию (глиальные макрофаги). Среди глиоцитов различают эпендимоциты, астроциты и олигодендроциты. Эпендимоциты выстилают спинномозговой канал и желудочки головного мозга. Астроциты образуют опорный аппарат центральной нервной системы. Олигодендроциты окружают тела нейронов в центральной и периферической нервной системе, образуют оболочки нервных волокон и входят в состав нервных окончаний. Клетки микроглии подвижны и способны фагоцитировать.

Нервными волокнами называются отростки нервных клеток (осевые цилиндры), покрытые оболочками. Оболочка нервных волокон (нейролемма) образована клетками, которые называются нейролеммоцитами (шванновские клетки). В зависимости от строения оболочки различают безмиелиновые (безмякотные) и миелиновые (мякотные) нервные волокна. Безмиелиновые нервные волокна характеризуются тем, что леммоциты в них лежат плотно друг к другу и образуют тяжи протоплазмы. В такой оболочке располагаются один или несколько осевых цилиндров. Миелиновые нервные волокна имеют более толстую. оболочку, внутренняя часть которой содержит миелин. При обработке осмиевой кислотой гистологических препаратов миелиновая оболочка окрашивается в темно-коричневый цвет. На определенном расстоянии в миелиновом волокне расположены косые белые линии -- насечки миелина и сужения -- узлы нервного волокна (перехваты Ранвье). Они соответствуют границам леммоцитов. Миелиновые волокна толще безмиелиновых, их диаметр 1-20 мкм.

Пучки миелиновых и безмиелиновых нервных волокон, покрытые соединительнотканной оболочкой, образуют нервные стволы, или нервы. Соединительнотканная оболочка нерва называется эпиневрием. Она проникает в толщу нерва и покрывает пучки нервных волокон (периневрий) и отдельные волокна (эндоневрий). В эпиневрии располагаются кровеносные и лимфатические сосуды, которые проходят в периневрий и эндоневрий.

Перерезка нервных волокон вызывает дегенерацию периферического отростка нервного волокна, при которой он распадается на участии различной величины. На месте перерезки возникает воспалительная реакция и образуется рубец, через который в дальнейшем возможно прорастание центральных отрезков нервных волокон при регенерации (восстановлении) нерва. Регенерация нервного волокна начинается с интенсивного размножения леммоцитов и образования из них своеобразных лент, проникающих в рубцовую ткань. Осевые цилиндры центральных отростков образуют на концах утолщения -- колбы роста и врастают в рубцовую ткань и ленты леммоцитов. Периферический нерв растет со скоростью 1--4 мм/сут.

Нервные волокна заканчиваются концевыми аппаратами-- нервными окончаниями. По функции различают три группы нервных окончаний: чувствительные, или рецепторы, двигательные и секреторные, или эффекторы, и окончания на других нейронах -- межнейрональные синапсы.

Чувствительные нервные окончания (рецепторы) образованы концевыми, разветвлениями дендритов чувствительных нейронов. Они воспринимают раздражения из внешней среды (экстерорёцепторы) и от внутренних органов (интерорецепторы). Различают свободные нервные окончания, состоящие только из концевого ветвления отростка нервной клетки, и несвободные, если в образовании нервного окончания принимают участие элементы нейроглии. Несвободные нервные окончания могут быть покрыты соединительнотканной капсулой. Такие окончания называются капсулированными: например, пластинчатого тельца (тельца Фатера--Пачини). Рецепторы скелетных мышц называются нервно-мышечными веретенами. Они состоят из нервных волокон, ветвящихся на поверхности мышечного волокна в виде спирали.

Эффекторы бывают двух типов -- двигательные и секреторные. Двигательные (моторные) нервные окончания являются концевыми разветвлениями нейритов двигательных клеток в мышечной ткани и называются нервно-мышечными окончаниями. Секреторные окончания в железах образуют нервно-железистые окончания. Названные виды нервных окончаний представляют собой нервно-тканевой синапс.

Связь между нервными клетками осуществляется при помощи синапсов. Они образованы концевыми ветвлениями нейрита одной клетки на теле, дендритах или аксонах другой. В синапсе нервный импульс проходит только в одном направлении (с нейрита на тело или дендриты другой клетки). В различных отделах нервной системы они устроены по-разному.

Нейрон в норме не делится, однако способен к восстановлению, причем восстановление обеспечивается нейроглией.

При повреждении нейрон, как правило, погибает и фагоцитируется («пожирается») микроглиальными клетками.

Если повреждается отросток нейрона, то разворачивается следующая цепь событий: начинается хроматолиз - разрушение и растворение вещества Ниссля, содержащегося внутри нейрона. Одновременно теряется вода, нейрон уменьшается в размерах, а дистальная часть перерезанного отростка распадается, т.е. Шванновские клетки отходят, а миелин растворяется – эта реакция в целом носит название первичной реакции Ниссля и представляет собой первичную дегенерацию .

На следующей стадии во время вторичной (Веллеровской) дегенерации периферический отрезок, потерявший связь с телом нейрона, распадается, однако Шванновские клетки образуют синцитий в виде лент, которые можно назвать пустыми «рукавами». «Рукава» обозначают бывшее место расположения отростка. Такие ленты называют Бюнгеровыми тяжами.

После этого начинается регенерация. На центральных концах отрезанных аксонов образуются утолщения – колбы роста. В этих колбах происходит наращивание аксона вдоль по Бюнгеровому тяжу вплоть до старой точки иннервации.

МЕТОДЫ ИССЛЕДОВАНИЯ НЕРВНОЙ ТКАНИ

Прежде чем подвергать нервную ткань гистологическому анализу, необходимо подготовить препарат, т.е. правильно взять материал и зафиксировать. Как правило, исследуется нервная ткань умерших организмов. И самый распространенный способ изучения – это способ с предварительной окраской. Окраска обуславливается свойством некоторых металлов образовывать на телах или отростках нейронов соединения, которые при действии восстановителя дают черный либо другой цвет.

Вещество Ниссля выявляется окраской метиленовым синим . Используют люминесцентную микроскопию с предварительным введением раствора трипафлавина , который создает красное свечение безмякотных волокон и зеленоватую флюоресценцию мякотных.

Для фиксации нервной ткани перед окраской используют 10-20% раствор формалина , большие куски (головной мозг) помещают на 24 часа в 5% формалина на физиологическом растворе (NaCl), после чего переносят в 10% раствор формалина. После этого вырезаются необходимые кусочки и выдерживаются либо в свежем формалиновом растворе, либо в др. фиксаторах (спирт, суржа, др.).

Некоторые методы предполагают первоначальную фиксацию в смеси формалина с бромистым аммоминием , либо в смеси спирта и аммиака. Используется также хлороформ, двухромовокислый калий, азотная кислота.

В дальнейшем кусочки мозга заливают в парафиновые блоки с помощью которых изготавливают микросрезы толщиной до 120 мкм. Готовые срезы наклеивают на предметное стекло и приступают к окраске. Осаждение солей металлов на клеточных мембранах делает их видимыми. Применяют также метод замороженных срезов, высушивания. Препараты можно окрашивать гематоксилином , эозином , пикрофуксином , хромовой кислотой , тионином , толуидиновым синим , крезиловым фиолетовым , галлоцианином , серебром , свинцом , золотом , молибденом , осмиевой кислотой .

Домашнее задание 2-й лекции.

1. Дайте схематическое изображение морфологических типов нейронов, подпишите составляющие элементы, и укажите структурную принадлежность данных типов.

2. Зарисуйте схему центральной части фронтального среза головы и обозначьте защитные структуры головного мозга.

ЛЕКЦИЯ О РАЗВИТИИ НЕРВНОЙ СИСТЕМЫ

ФИЛОГЕНЕЗ НЕРВНОЙ СИСТЕМЫ

Филогенез – это постепенное развитие форм органического мира в процессе эволюции.

Простейшие одноклеточные не имеют нервных систем, поэтому все их реакции являются результатом деятельности одной клетки. У многоклеточных появляются отдельные нервные клетки, задача которых быстро распознать угрожающий внешний фактор и передать сигнал тем клеткам, которые могут защитить организм (мышечные, стрекательные, прочие). Такой тип нервной системы называется диффузным или сетевидным. Она способна воспринимать раздражение любых участков тела и посылать импульсы другим клеткам. Появление в эволюции диффузной нервной системы давало животным преимущество в борьбе за выживание, так как такие животные быстрее спасались от хищников и быстрее охотились сами.

С течением времени наблюдалась концентрация - рассеянные нервные клетки стали располагаться ближе друг к другу, возникали узлы и общие тракты, в результате этого сформировался узловой тип нервной системы. Узловая нервная система – это такая система нервных клеток, которая характеризуется их концентрацией в центры (узлы) с отходящими нервными стволами. Посегментно расположенные ганглии служат центрами иннервации соответствующих сегментов тела у животных. В головном конце тела располагаются надглоточные крупные узлы – прообраз головного мозга позвоночных животных.

Следующий этап состоит в том, что нейроны сгруппированы не только в отдельные нервные узлы, но даже в продолговатый непрерывный нервный тяж – внутри которого имеется полость – это трубчатая нервная система .

Нервная трубка характерна для хордовых – у нее выделяют два отдела: головной и спинной. Из туловищного отдела выходят многочисленные корешки (у человека это корешки спинномозговых нервов).

В соответствии с метамерностью тела хордовых животных единая трубчатая нервная система состоит из ряда однотипных повторяющихся структур, или сегментов.

В головном конце нервной трубки в связи с развивающимися в передних отделах туловища органов чувств сегментарное строение нервной трубки хотя и сохраняется, но претерпевает изменения. Эти отделы нервной трубки являются зачатком, из которого развивается головной мозг.

Развитие головного мозга происходит параллельно с усовершенствованием спинного мозга, причем появление новых центров в головном мозге ставит как бы в подчиненное положение уже существующие центры спинного мозга. В головном отделе нервной трубки (головном мозге) возникали новые вспомогательные нейроны и передний отдел трубки разрастался (цефализация ). Более старые н6ервные центры, сформировавшиеся на ранних этапах эволюции, не исчезают, а сохраняются, занимая подчиненное положение по отношению к более новым.

Далее в прогрессивном развитии организма шло количественное изменение: общий рост нервной трубки. Однако, было приобретено и новое качество - полушария переднего мозга и развитие коры, где возникают новые регуляторные центры, подчиняющие себе нервные центры низшего порядка, координируют их деятельность, объединяя нервную систему в структурное и функциональное целое. Такой процесс был назван кортиколизацией функций.

Параллельно с развитием конечного мозга шло развитие (усложнение и дифференцировка) всех других отделов мозга, перестройка восходящих и нисходящих нервных трактов. В спинном мозге формировались два небольших утолщения (шейное и поясничное). Эти два утолщения содержат нейроны, функции которых управление конечностями, причем шейное утолщение более мощное.

Эволюция головного мозга проявилась в развитии и совершенствовании рецепторного аппарата, усовершенствовании механизмов приспособления организма к окружающей среде путем изменения обмена веществ, кортиколизации функций.

ОНТОГЕНЕЗ НЕРВНОЙ СИСТЕМЫ

Онтогенез – это постепенное развитие организма или его части от момента зарождения до смерти.

Нервная система человека развивается из эктодермы в дорсальном отделе туловища зародыша, где эктодермальные клетки образуют нервную (медуллярную) пластинку. Медуллярная пластинка сначала однослойная, позже в ней появляются спонгиобласты (предшественники нейроглии) и нейробласты (предшественники нейронов). Эти клетки делятся, нервная пластинка разрастается. В боковых ее частях деление происходит более интенсивно, поэтому она прогибается, на ней появляются валики, в результате чего нервная пластинка становится нервным желобком , в дальнейшем валики смыкаются и появляется нервная трубка , после сращения валиков нервная трубка отшнуровывается от эктодермы и погружается в мезодерму.

Медуллярная (нервная) трубка в период замыкания состоит из трех слоев. Из внутреннего слоя нервной трубки развивается эпендимная выстилка центрального канала, из среднего слоя развивается серое вещество, из наружного - белое.

Нервная трубка растет в длину, в ширину, кроме этого некоторые клетки выселяются (клетки зачатков глаз).

Уже у 4-х недельного эмбриона есть головной «пузырный» мозг. На первом этапе головной мозг состоит из трех пузырей (ромбовидный, средний, передний мозг). В дальнейшем, после дифференцировки переднего и ромбовидного пузырей выделяется пять пузырей (конечный мозг, промежуточный мозг, средний мозг, задний мозг и продолговатый мозг).

Спинной мозг плода в первые 3 месяца внутриутробного развития по длине равен позвоночному каналу, однако, позвоночник растет быстрее, чем спинной мозг, в результате чего формируется «конский хвост». «Конский хвост» – представляет собой совокупность спинномозговых нервов, соединяющих сегменты спинного мозга с соответствующими им межпозвонковыми отверстиями.

Нервная трубка у четырехнедельного эмбриона, характеризуется не только наличием пузырей, но и изгибами в сагиттальной плоскости – эти изгибы служат границами отделов мозга: часть изгибов обращены вентрально, а часть - дорсально. Пятипузырный головной мозг характеризуется разрастанием отделов латерально (например: из промежуточного головного мозга латерально выпячиваются глазничные пузырьки).

Рассмотренный путь развития влияет на рисунок центрального мозгового канала: в ЦНС центральный спинномозговой канал соединяется системой желудочков головного мозга.

К моменту рождения в ЦНС имеется головной мозг с отделами: продолговатый мозг, Варолиев мост, мозжечок, средний мозг, промежуточный мозг и передний мозг.

Передний мозг содержит первый и второй мозговые желудочки . Между буграми таламуса в промежуточном мозге располагается третий желудочек, который через Сильвиев водопровод соединяется с четвертым желудочком, расположенным между мостом, продолговатым мозгом и мозжечком.

Домашнее задание 3-й лекции

1. Дайте схематическое изображение основных типов нервной системы в эволюции и приведите примеры животных, имеющих соответствующую организацию.

2. Зарисуйте схематические изображения ЦНС человека на последовательных этапах эмбриогенеза, указав сроки и размеры эмбриона, и обозначьте формирующиеся структуры.

ЛЕКЦИЯ О СПИННОМ МОЗГЕ

Спинной мозг взрослого человека – это цилиндрический тяж, длиной 40-45 см, массой около 34-38 г и диаметром 1.5 см, расположенный в спинномозговом канале позвоночника на протяжении от большого затылочного отверстия черепа до второго поясничного позвонка, далее продолжается в виде конского хвоста, заканчивается терминальной (концевой) нитью.

Конский хвост состоит из спинномозговых нервов, лежащих ниже первого поясничного сегмента спинного мозга. Концевая (терминальная) нить образована только оболочками спинного мозга.

У спинного мозга имеются два утолщения :

1. шейное (от II шейного до II грудного позвонка),

2. поясничное (от X грудного до I поясничного позвонка), переходящее в мозговой конус.

В этих зонах число нервных клеток увеличено в связи с тем, что здесь берут начало нервы, иннервирующие конечности.

В вентральной части спинного мозга располагается передняя срединная щель, сзади - задняя срединная борозда, а по бокам - передние и задние боковые борозды. Борозды делят каждую половинку спинного мозга на три кнатика.

Из боковых борозд выходит двойной ряд пучков нервных волокон – корешков спинномозговых нервов (СМН). Передний корешок образуется аксонами двигательных нейронов передних рогов серого вещества спинного мозга. Задний корешок образован аксонами чувствительных нейронов спинномозговых ганглиев.

В спинном мозге выделяют 31 сегмент:

§ 8 шейных (сегменты С 1 -С 8),

§ 12 грудных (сегменты Т 1 -Т 12),

§ 5 поясничных (сегменты L 1 -L 5),

§ 5 крестцовых (сегменты S 1 -S 5),

§ 1 копчиковый (сегменты Со 1).

Количество сегментов не совпадают с количеством позвонков.

От спинного мозга отходят 31 пара СМН, то есть 124 корешка. Счет идет следующим образом: в спинном мозге 31 сегмент (62 спинномозговых нерва), каждый нерв состоит из двух корешков (124).

Таким образом, сегмент спинного мозга – это его часть с отходящими от него двумя СМН (или четырьмя корешками).

Начиная с четырех месяцев внутриутробного развития человека позвоночник обгоняет в росте спинной мозг. Этот процесс заканчивается вместе с ростом человека и в результате спинной мозг заканчивается на уровне второго поясничного позвонка, соответственно первый грудной сегмент лежит на уровне седьмого шейного позвонка, первый поясничный сегмент - на уровне десятого грудного позвонка, первый крестцовый сегмент – на уровне первого поясничного позвонка, первый шейный сегмент находится между первым шейным позвонком и черепом.

На поперечном разрезе спинного мозга видно и серое и белое вещество. В центре спинного мозга проходит центральный канал, остаток просвета нервной трубки.

СТРОЕНИЕ СЕРОГО ВЕЩЕСТВА

На горизонтальном разрезе спинного мозга серое вещество по форме напоминает букву «Н» или бабочку. Здесь выделяют передние, задние и боковые рога.

Боковые рога имеются только с первого грудного по третий поясничный сегмент, в них лежат тела преганглионарных симпатических нейронов. В шейных сегментах и верхних грудных сегментах между передними рогами имеются тонкие перекладины серого вещества – сетчатое образование спинного мозга.

Передние рога содержат тела двигательных нейронов – аксоны, которые выходя из передней латеральной борозды образуют передние корешки.

Задние рога содержат тела вставочных нейронов. На верхушках задних рогов различают студенистое вещество , которое состоит из тел вставочных нейронов, соединяющих своими отростками различные сегменты спинного мозга.

СТРОЕНИЕ БЕЛОГО ВЕЩЕСТВА

Белое вещество– образовано миелинизированными отростками нейронов – афферентными (восходящими) и эфферентными (нисходящими). Эти волокна образуют проводящий аппарат спинного мозга. С каждой стороны белое вещество делится на три канатика (задний, боковой, передний).


Похожая информация.


Частная физиология центральной нервной системы — раздел , изучающий функции структур головного и спинного мозга, а также механизмы их осуществления.

К методам исследования функций центральной нервной системы относятся нижеперечисленные.

Электроэнцефалография — метод регистрации биопотенциалов, генерируемых головного мозга, при отведении их от поверхности кожи головы. Величина таких биопотенциалов составляет 1-300 мкВ. Они отводятся с помощью электродов, накладываемых на поверхность кожи головы в стандартных точках, над всеми долями мозга и некоторыми их областями. Биопотенциалы подаются на вход прибора электроэнцефалографа, который их усиливает и регистрирует в виде электроэнцефалограммы (ЭЭГ) — графической кривой непрерывных изменений (волн) биопотенциалов мозга. Частота и амплитуда электроэнцефалографических волн отражают уровень активности нервных центров. С учетом величин амплитуды и частоты волн выделяют четыре основных ритма ЭЭГ (рис. 1).

Альфа-ритм имеет частоту 8-13 Гц и амплитуду 30- 70 мкВ. Это относительно регулярный, синхронизированный ритм, регистрируемый у человека, находящегося в состоянии бодрствования и покоя. Он выявляется приблизительно у 90% людей, находящихся в спокойной обстановке, при максимальном расслаблении мышц, с закрытыми глазами или в темноте. Альфа-ритм наиболее выражен в затылочных и теменных долях мозга.

Бета-ритм характеризуется нерегулярными волнами с частотой 14-35 Гц и амплитудой 15-20 мкВ. Этот ритм регистрируется у бодрствующего человека в лобных и теменных областях , при открытии глаз, действии звука, света, обращении к испытуемому, выполнении им физических действий. Он свидетельствует о переходе нервных процессов к более активному, деятельному состоянию и повышению функциональной активности мозга. Смену альфа-ритма или других электроэнцефалографических ритмов мозга на бета-ритм называют реакцией десинхронизации, или активации.

Рис. 1. Схема основных ритмов биопотенциалов головного мозга (ЭЭГ) человека: а — ритмы, регистрируемые с поверхности кожи головы в покос; 6 — действие света вызывает реакцию десинхронизации (смену α-ритма на β-ритм)

Тета-ритм имеет частоту 4-7 Гц и амплитуду до 150 мкВ. Он проявляется при поздних стадиях засыпания человека и развитии наркоза.

Дельта-ритм характеризуется частотой 0,5-3,5 Гц и большой (до 300 мкВ) амплитудой воли. Он регистрируется над всей поверхностью мозга во время глубокого сна или наркоза.

Основную роль в происхождении ЭЭГ отводят постсинаптическим потенциалам . Считается, что на характер ЭЭГ-ритмов оказывает наибольшее влияние ритмическая активность пейсмекерных нейронов и ретикулярной формации ствола мозга. При этом таламус индуцирует в коре высокочастотные, а ретикулярная формация ствола мозга — низкочастотные ритмы (тета и дельта).

Метод ЭЭГ широко используется для регистрации нейронной активности в состояниях сна и бодрствования; для выявления очагов повышенной активности в мозге, например при эпилепсии; для исследования влияния лекарственных и наркотических веществ и решения других задач.

Метод вызванных потенциалов позволяет регистрировать изменение электрических потенциалов коры и других структур мозга, вызываемых стимуляцией различных рецепторных полей или проводящих путей, связанных с этими структурами мозга. Возникающие в ответ на одномоментное раздражение биопотенциалы коры носят волнообразный характер, длятся до 300 мс. Для выделения вызванных потенциалов из спонтанных электроэнцефалогических волн применяют сложную компьютерную обработку ЭЭГ. Эта методика используется в эксперименте и в клинике для определения функционального состояния рецепторной, проводниковой и центральной частей сенсорных систем.

Микроэлектродный метод позволяет с помощью тончайших электродов, вводимых в клетку или подводимых к нейронам, расположенным в определенной области мозга, регистрировать клеточную или внеклеточную электрическую активность , а также оказывать на них воздействие электрическими токами.

Стереотаксический метод позволяет вводить в заданные структуры мозга зонды, электроды с лечебной и диагностической целью. Их введение осуществляется с учетом трехмерных пространственных координат расположения интересующей структуры мозга, которые описаны в стереотаксических атласах. В атласах указывается под каким углом и на какую глубину относительно характерных анатомических точек черепа должны вводиться электрод или зонд для достижения интересующей структуры мозга. При этом голова больного фиксируется в специальном держателе.

Метод раздражения. Раздражение различных структур мозга чаще всего проводится с помощью слабого электрического тока. Такое раздражение легко дозируется, не вызывает повреждений нервных клеток и может наноситься многократно. В качестве раздражителей используются также различные биологически активные вещества.

Методы перерезок, экстирпации (удаления) и функциональной блокады нервных структур. Удаление структур мозга и их перерезки широко использовались в эксперименте в начальный период накопления знаний о мозге. В настоящее время сведения о физиологической роли различных структур ЦНС пополняются клиническими наблюдениями за изменением состояния функций мозга или других органов у больных, подвергшихся удалению или разрушению отдельных структур нервной системы (при опухолях, кровоизлияниях, травмах).

При функциональной блокаде производят временное выключение функций нервных структур путем введения веществ тормозного действия, воздействий специальных электрических токов, охлаждения.

Реоэнцефалография. Представляет собой методику исследования пульсовых изменений кровенаполнения мозговых сосудов. Она основана на измерении сопротивления нервной ткани электрическому току, которое зависит от степени их кровенаполнения.

Эхоэнцефалография. Позволяет определять локализацию и размеры уплотнений и полостей в мозге и костях черепной коробки. Эта методика основывается на регистрации ультразвуковых волн, отраженных от тканей головы.

Методы компьютерной томографии (визуализации). Основаны на регистрации сигналов от проникших в ткани мозга короткоживущих изотопов с помощью магниторезонансной, позитронно-эмиссионной томографии и регистрации поглощения проходящих через ткани рентгеновских лучей. Обеспечивают получение четкого послойного и трехмерного изображения структур мозга.

Методы исследования условных рефлексов и поведенческих реакций. Позволяют изучать интегративные функции высших отделов мозга. Эти методы подробнее рассмотрены в разделе интегративные функции мозга.

Современные методы исследования

Электроэнцефалография (ЭЭГ) — регистрация электромагнитных волн, возникающих в коре головного мозга при быстром изменении потенциалов корковых полей.

Магнитоэнцефалография (МЭГ) — регистрация магнитных полей в коре головного мозга; преимущество МЭГ над ЭЭГ связано с тем, что МЭГ не испытывает искажений от тканей, покрывающих мозг, не требует индифферентного электрода и отражает только источники активности, параллельные черепу.

Позитивно-эмиссионная томография (ПЭТ) — метод, позволяющий с помощью соответствующих изотопов, введенных в кровь, оценить структуры мозга, а по скорости их перемещения — функциональную активность нервной ткани.

Магнитно-резонансная томография (МРТ) — основана на том, что различные вещества, обладающие парамагнитными свойствами, способны в магнитном ноле поляризоваться и резонировать с ним.

Термоэнцефалоскопия — измеряет локальный метаболизм и кровоток мозга по его теплопродукции (недостатком его является то, что он требует открытой поверхности мозга, применяется в нейрохирургии).